
Graph Grammars and

Operations on Graphs

Jan Joris Vereijken

May 19, 1993

Department of Computer Science

Leiden University

The Netherlands



ii

Master’s Thesis, Leiden University, The Netherlands.

Title : Graph Grammars and Operations on Graphs

Author : Jan Joris Vereijken

Supervisor : Dr. Joost Engelfriet

Completion date : May 19, 1993

Copyright c©1993 • Jan Joris Vereijken • Leiden Typeset by AMS-LaTEX.



iii

Problems worthy

of attack

prove their worth

by hitting back.





Contents

1 Introduction 1

1.1 Graph grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definitions 5

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Typed alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Typed languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Typed grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Typed languages versus typed grammars . . . . . . . . . . . . . . . . . . . 12

3 I/O-hypergraphs 17

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Depiction of hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Ordinary graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 String graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 External versus internal nodes . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Hypergraph languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Union of hypergraph languages . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Composition 25

4.1 Sequential composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Sequential composition versus degree and loops . . . . . . . . . . . . . . . 27

4.3 Parallel composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Sequential versus parallel composition . . . . . . . . . . . . . . . . . . . . . 29

v



vi Contents

4.5 Expressions used as a function . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Decomposition 33

5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 HGR
·

−→ LA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 LA
·

−→ LB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 LB
·

−→ LC2 ∪ LC3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 LC3

·,+
−→ LC1 ∪ LC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 LC2

·,+
−→ LC4 ∪ LC5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7 LC4

·,+
−→ LC6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8 LC5

·,+
−→ LC6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.9 LB
·,+
−→ LC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Folds and flips 43

6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Derived properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Interpretation 47

7.1 Definition of an interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Definition of Int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Examples of interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4 Edge Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.5 Existence of isomorphic copies . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.6 Bounded degree implies bounded cutwidth . . . . . . . . . . . . . . . . . . 53

8 Power of interpretation 57

8.1 Int(RLIN) = Int(LIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2 Int(RLIN) = Int(DB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.3 Int(STR(Int(K))) = Int(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4 About STR(Int(RLIN)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.5 The power of interpretation theorems . . . . . . . . . . . . . . . . . . . . . 79

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Closure properties of Int(K) 83

9.1 Closure under sequential composition . . . . . . . . . . . . . . . . . . . . . 83

9.2 Closure under union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Contents vii

9.3 Closure under Kleene closure . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4 Closure under +{Un} and {Un}+ . . . . . . . . . . . . . . . . . . . . . . . 85

9.5 Closure under parallel composition . . . . . . . . . . . . . . . . . . . . . . 86

9.6 Closure under fold and backfold . . . . . . . . . . . . . . . . . . . . . . . . 86

9.7 Closure under flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.8 Closure under split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.9 Closure under edge relabeling . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10 Another characterization 91

10.1 Using HGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.2 Using the sequential pseudo base set . . . . . . . . . . . . . . . . . . . . . 92

10.3 Using the full base set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11 Other literature 95

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

11.2 Engelfriet and Heyker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

11.3 Context-Free Hypergraph Grammars . . . . . . . . . . . . . . . . . . . . . 97

11.4 split(Γ(LIN-CFHG)) = Int(RLIN) . . . . . . . . . . . . . . . . . . . . . . . 98

11.5 Int(RLIN)  Int(CF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.6 Int(CF)  split(Γ(CFHG)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.7 Bauderon and Courcelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11.8 Habel and Kreowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.9 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

12 Summary 109

13 Acknowledgments 111

A Naming conventions 113

B Proofs 117

B.1 Proofs concerning Section 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Proofs concerning Section 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 127

Index 129





For those who like this sort of thing,

this is the sort of thing they like.

— Abraham Lincoln 1
Introduction

1.1 Graph grammars

Just like sets of strings (string languages) can be characterized by string grammars, sets of

graphs (graph languages) can be characterized by graph grammars. Over the past decade,

a lot of research has been done into this subject. The approach mainly taken was either

to rewrite edges, or to rewrite nodes.

However, a completely different approach to define graph languages is also imaginable:

one defines a number of operations on graphs (including constants), and considers a string

language of expressions over these operations. The graphs obtained by evaluating these

expressions then form a graph language.

In this thesis we describe and investigate a simple formalism of the latter kind. We

define only one nonconstant operation on graphs: sequential composition.

When we now take a string language over some alphabet, and a function from that

alphabet to a set of graphs, we can do the following. For each string in the language, take

the graphs one obtains by applying the function to all the symbols that form that string.

Now take the sequential composition of all those graphs, in the order as indicated by the

order of the symbols that form the string. This yields a graph. So, for every string in

the language, we obtain a graph. Together they form a graph language. We have called

this formalism interpretation: we take a string language and a function, and interpret

the strings in that language as graphs, in the way indicated by that function (called the

interpreter). Note that the symbols in the alphabet may be viewed as graph constants,

1



2 Introduction

that can be arbitrarily interpreted as graphs, by the interpreter. Strings may be viewed

as expressions over these constants and sequential composition. Thus, concatenation of

strings is interpreted as sequential composition of graphs.

This formalism to associate graph languages with string languages has the following

obvious advantage above a graph grammar formalism. From formal language theory, a lot

of different classes (for example, the Chomsky hierarchy) of string languages are known.

By means of interpretation, we can immediately derive classes of graph languages from

these classes of string languages. For example, from the class of all regular languages, we

instantly derive the class of all graph languages obtainable by interpretation of regular

languages. In this way, for every known class of string languages, we now also have a

corresponding class of graph languages.

In the chapters to follow, we will investigate the relations between several classes ob-

tained by interpretation in this way. We will look at their properties, and how our formalism

relates to other formalisms (mainly graph grammars) that were proposed to define graph

languages. That brings us to the title of this thesis: “Graph Grammars and Operations

on Graphs”. In our view, a string grammar/interpreter pair is just a “graph grammar in

disguise”. This will be justified by the results we will find; they are very much alike the

results obtained by using a “real” graph grammar.

1.2 The structure of this thesis

The structure of this thesis is the following. In Chapter 2, we lay out the mathematical

framework needed to express ourselves. In particular, we will introduce the concept of typ-

ing: every symbol, string, string language, graph, or whatever, has two integers associated

with it, its input type, and its output type.

As we will want to interpret concatenation as sequential composition, we will need a

special kind of graphs, namely i/o-hypergraphs (Chapter 3). These have distinguished input

nodes and output nodes, so we have an easy way to define how the sequential composition

acts on them: roughly speaking, sequential composition connects two graphs to one another

by “hooking” the first’s output nodes to the second’s input nodes, just like railroad cars

are hooked together to form a train. By the typing, we indicate the number of nodes that

need to be hooked. If we now make sure that the types of two neighboring symbols within

a string match, and that the interpretation function preserves the type of the symbols, we

can guarantee that in the process of interpreting we will only apply sequential composition

to graphs that “fit”. This is, in short, the reason we need all our objects to be typed:

to ensure that all our operations are applied in a way that makes sense, i.e., the objects

operated on must fit.



The structure of this thesis 3

Then, in Chapter 4, we formally define the sequential composition operation, and its less

important counterpart, parallel composition. Using these operations, we can take “small”

graphs, and use them to build larger ones. As noted, sequential composition is like hooking

railroad cars together, with graphs. Continuing this metaphor, parallel composition is like

stacking railroad cars on top of one another (for example, in order to build a double-deck

automobile carrier).

Just like the composition operations build larger graphs form small ones, we can also

do the opposite: take a large graph to pieces, namely small graphs. In Chapter 5, we

investigate this process, which is called decomposition. We will try to find the “smallest”

set of “small” graphs from which all other ones can be built. Or in other words, we search

for the “basic building blocks” of graphs (the answer, more or less, is: edges).

In Chapter 6 we introduce four auxiliary operations on graphs. These operations do not

operate on the internal structure of graphs, but only on the “superficial” structure of which

distinguished nodes are input nodes, and which ones are output nodes. Some properties of

these operations are investigated. They will “only” be needed to conveniently express the

technical details of some proofs, but nonetheless they have a beauty of their own.

After that, in Chapter 7, we are finally ready to introduce the formalism of interpreta-

tion, and will devote three chapters to the investigation of its power and properties. First

of all, we will prove some theorems about classes of graph languages obtained by interpre-

tation, one of them concerning a normal form for interpretation. Most importantly, these

theorems will gain us an insight in the structure of these kinds of classes.

Then, in Chapter 8, we look at the classes of regular, linear, and derivation-bounded

languages under interpretation. As it turns out, all three give rise to the same class, which

we propose as the “class of regular graph languages”. Furthermore, we indicate how large

a class can get so that under interpretation it is still the same as the class of all regular

graph languages. This culminates in the two “power of interpretation” theorems, which

give strong indications on the power of interpretation.

In Chapter 9 we look at some closure properties of a general class of graph languages

obtained by interpretation. The conditions for closure will be given in terms of closure

properties of the underlying class of string languages on which the interpretation acted.

Following that, there are two chapters where we make comparisons with other for-

malisms. In Chapter 10 we give a “smallest class closed under . . . ” characterization of the

class of all regular graph languages, and in Chapter 11 we look at the relations between

the formalism of interpretation and some other formalisms that have been proposed in the

literature. Luckily, our idea of “the class of regular graph languages” corresponds very well

with some classes proposed by other researchers.

There are two appendices. In Appendix A we account for the naming conventions (e.g.,



4 Introduction

n is always an integer, w is always a string of symbols) we have used throughout this thesis.

By strictly adhering to these conventions, we hope to have made our constructions easier

to read. Appendix B contains some proofs that we did not want in give in full in the main

text.

Finally, there is a Bibliography, which contains information about the literature we

refer to, and an extensive Index.

1.3 Closing remarks

This Master’s thesis was written in the final fulfillment of the requirements for a Master’s

degree in Theoretical Computer Science at the Rijksuniversiteit te Leiden, The Netherlands,

under the supervision of Dr. Joost Engelfriet.

For those curious, the motto on page iii appeared as a fortune cookie on my computer

terminal one winter night at 4:30 AM, when after a whole night of TEX’ing and fiddling

with the definition of interpretation, I found out that I had “fixed” the definition, but

broken all my proofs, seemingly beyond repair. Disillusioned I logged out of our vax/vms

system, only to end up with a screen that said, in large, friendly, VT100 letters:

Problems worthy of attack prove

their worth by hitting back.

It seemed very appropriate.



We will restrict ourselves to natural numbers

only, as there are quite enough of these.

— Edsger Wybe Dijkstra 2
Definitions

In this chapter the definitions and notations are laid out of the mathematical framework

we will need. Some of them are very common, and in wide use, and some are quite novel.

In particular, we introduce typed variants of the concepts of a grammar and a language,

as noted in the introduction.

2.1 Terminology

We assume the reader to be familiar with elementary set theory (see, e.g., [Kam50], [BS87,

§5], or [Her75, §1.1]), and elementary formal language theory (see, e.g., [HU79] or [CL89]).

Some basic knowledge about graphs is also useful (see, e.g., [BS87, §11] or [Joh84, §3]).

Numbers: N denotes the set {0, 1, 2, . . . } of all nonnegative natural numbers. The in-

terval {1, . . . , n} is denoted by [n], and the interval {m, . . . , n} by [m, n]. For a finite set

V  N, by max(V ) we denote the largest element of V , and by min(V ) the smallest

element.

Sets: Set inclusion is denoted by ⊆, proper set inclusion by  , set union by ∪, set

intersection by ∩. Set difference is denoted by \ or −. The symbols ⊇ and ! denote the

inverses of ⊆ and  . The empty set is denoted by ∅, set membership by ∈, or inversely,

3. For a set V , P(V ) denotes the power set of V ; P(V ) = {W | W ⊆ V }. The cardinality

5



6 Definitions

of a set V is denoted1 by |V |. The cartesian product of two sets V and W is denoted by

V × W , and the n times repeated cartesian product of a set V with itself by V n.

Sequences: A sequence over a set V is denoted (v1, . . . , vn), the empty sequence () by λ,

and V ∗ denotes the set of all sequences. The length of a sequence α ∈ V ∗ is denoted by |α|.

A sequence of length n will also be called an n-sequence.

Logic: By TRUE and FALSE we denote the boolean constants for true and false. Logical

or is denoted by ∨, and logical and by ∧. The symbol =⇒ denotes logical implication,

and ⇐⇒ logical equivalence (if and only if). We follow the convention to write “iff”

as a shorthand for “if and only if”. The symbol ∀ denotes universal quantification (“for

all”) and ∃ denotes existential quantification (“there exists”). These quantors are always

subscripted by the declarations of the variables that are local to the quantification, e.g.,

∀a,b,c,n∈N+ (n ≥ 3 =⇒ an + bn 6= cn). Name clash ambiguities between local and global

variables are not allowed.

Relations: The symbol ≡ always denotes an equivalence relation. For a set V and an

equivalence relation ≡ on V , the equivalence class of v ∈ V with respect to ≡ is denoted

by [v]≡, and the set of all equivalence classes by V/≡. An equivalence relation ≡ on some

set V may be thought of as a set, namely the set { (v, v′) ∈ V × V | v ≡ v′ } of all pairs

from V that are equivalent.

We extend the notation to sequences and functions in the following way. For a sequence

(v1, . . . , vn) over a set V , and ≡ an equivalence relation on V , by [(v1, . . . , vn)]≡ we denote

the sequence ([v1]≡, . . . , [vn]≡). For a function f : V1 → V2 and an equivalence relation ≡

on V , the function f≡ is defined as f≡(v) = [f(v)]≡, for all v ∈ V1. By the symbol ≈ we

denote the informal concept of “approximate” equality. Formally, ≈ means nothing at all !

Functions: For two functions f : V1 → V2 and g : V2 → V3 the composition is written as

g ◦ f , and for all v ∈ V1, (g ◦ f)(v) = g(f(v)). The restriction of a function f : V → W

to a subset V ′ of V is denoted f � V ′. A function f : V → W whose domain V contains

exactly one element may be denoted a 7→ f(a), where a is that one element. For a bijective

function (also called bijection) f : V1 → V2, its inverse is denoted f−1 : V2 → V1.

Alphabets: An alphabet (also called ordinary alphabet) is a nonempty finite set of sym-

bols. A ranked alphabet is an alphabet that has a rank from N associated with every

1Warning : the symbol # is only used in identifier names, not to denote set cardinality.



Terminology 7

symbol. For an alphabet Σ and a symbol a ∈ Σ, this rank is denoted as rankΣ(a). To

express its rank, a symbol a with rank n may be denoted (a, n).

Strings: A string2 over an alphabet Σ is a sequence w ∈ Σ∗, a substring v ∈ Σ∗ of a

string w ∈ Σ∗ is a string such that there exists strings u, z ∈ Σ∗ such that uvz = w. If

u = λ the string v is called a prefix of w, and if furthermore v and z are both nonempty

it is called a proper prefix. Conversely, when z = λ, the string v is called a postfix, and a

proper postfix if also u and v are nonempty. By the symbol · we denote the concatenation

of strings. For a string w = a1 . . . an its reverse an . . . a1 is denoted by wR. This operation

is called reversal. A language over an alphabet Σ is a set L ⊆ Σ∗, in other words, a set

of strings over Σ. If we say that L is strictly over Σ, we mean that all symbols are really

used, i.e., for all a ∈ Σ there exists a string w ∈ L such that a is a substring of w.

Grammars: A context-free grammar is denoted G = (N, T, P, S), where N is the non-

terminal alphabet, T is the terminal alphabet (disjoint with N), P is the set of productions

(of the form A → α with A ∈ N , and α ∈ (N ∪ T )∗), and S ∈ N is the initial symbol. A

derivation of an α ∈ (N ∪ T )∗ by a nonterminal A ∈ N will be denoted A ⇒∗ α. When

we want to explicitly mention the length k of the derivation, we write A ⇒k α. We may

prefix any of these syntactic constructs by the name G of the grammar in order to stress

to which grammar it belongs. E.g.: G : A ⇒∗ α, meaning A derives α in G. The set of all

context-free grammars is denoted by G(CF). For a context-free grammar G the language

it defines is denoted L(G).

Classes of languages: The class of all context-free languages, { L(G) | G ∈ G(CF) } is

denoted by L(CF). The following well-known classes of context-free languages are used in

this thesis: L(RLIN), the class of all right-linear languages, L(LIN), the class of all linear

languages and L(DB), the class of all derivation-bounded languages. Where there can be

no confusion, we may omit the L’s.

A language L is said to be right-linear iff it can be generated by a context-free grammar

G that satisfies the restriction that for every p ∈ P , p is of the form A → wB, or A → w,

where A, B ∈ N and w ∈ T ∗. Such a grammar G is also called right-linear. The class of all

right-linear languages is also often called the class of all regular languages, and therefore,

sometimes denoted as REG.

A language L is linear iff it can be generated by a context-free grammar G that satisfies

the restriction that for every p ∈ P , p is of the form A → vBw, or A → v, where A, B ∈ N

and v, w ∈ T ∗. Such a grammar G is also called linear.

2Traditionally, strings are also often called words.



8 Definitions

A language L is derivation-bounded iff it can be generated by a context-free grammar G

such that for some m ∈ N, for every w ∈ L there is a derivation S ⇒ α1 ⇒ · · · ⇒ αn ⇒ w,

where αi ∈ (N ∪ T )∗, in G such that there is no αi that contains more than m occurrences

of symbols from N . This bound m is called the derivation bound. Such a grammar G is

also called derivation-bounded.

The relation between the above mentioned classes of languages is RLIN  LIN  DB  

CF (note that all inclusions are proper).

Formally, if X is a property of a grammar, then G(X) is the class of all grammars

that have that property, and L(X) = { L(G) | G ∈ G(X) } is the class of all languages

generated by those grammars. So, strictly speaking, RLIN (for example) is a property of

grammars (namely, right-linearity), G(RLIN) is a class of grammars, and L(RLIN) is a

class of languages. As noted, we will informally often omit the L, and use X to denote

L(X).

2.2 Typing

As noted in the introduction, we want our objects to be “typed”. That is, with almost

every object, be it a symbol, an alphabet, a language, or whatever, we want to associate a

type, denoted (m → n) (where m, n ∈ N).

The general idea behind this is twofold. Firstly, for some our functions we will want

to require type preservingness, i.e., the function must always return an object of the same

type as the object it took as argument. Secondly, we will want to specify type conditions,

i.e., some binary operations will only be defined under certain conditions on the types of

the two arguments. In this way, we can always assure that the results of our computations

are defined and meaningful.

Compare this to what happens in strongly typed programming languages. Take for

example pascal. There all variables have to be declared, and must be used in accordance

with their declaration. So when, e.g., we declare var n:integer; x:real; the assignment

x := sqrt(n); makes sense, but n := sqrt(x); will result in a compile-time error. Or

compare it to what happens in physics, where we have the concept of unit. We are only

allowed to operate on quantities in a way that makes sense with respect to their respective

units. So, one kilogram plus two kilograms makes three, but two meters plus four seconds

is always nonsense. Just as obeying the declarations in pascal program, and the units in

a physical computation, is a sine qua non for the results to make sense, we will have to

obey certain rules of typing too.

The reason that we want to give each object an input type and an output type, is that

our graphs (to be defined later) will have two distinguished types of nodes: input nodes,



Typed alphabets 9

and output nodes. Intuitively, an object of type (m → n) stands as a placeholder for a

graph with m input nodes and n output nodes.

In the three sections to follow, we will define typed variants of the concepts of an

alphabet, a language and a grammar.

2.3 Typed alphabets

A typed alphabet is an alphabet that has two ranks from N associated with every symbol.

For an alphabet Σ and a symbol a ∈ Σ, these two ranks are denoted as #inΣ(a) (the input

type) and #outΣ(a) (the output type). We may drop the subscribed Σ where there can be

no confusion. A symbol a ∈ Σ with input type m and output type n may also be denoted

(a, m → n). It is said to be of type (m → n). If we want to stress the fact that a symbol

belongs to a typed alphabet, we may call it a typed symbol. Consequently, a symbol from

an ordinary alphabet may be called an ordinary symbol. Mutatis mutandis, we define a

typed set to be a set that has two ranks from N associated with every element, and refer

to a nontyped set as an ordinary set.

A typed alphabet Σ1 and an ordinary alphabet Σ2 such that both contain exactly the

same symbols are considered equal (denoted Σ1 = Σ2), albeit there are two functions

that are defined on the first that are undefined on the second (also see the “philosophical

sidenote” at the end of Section 2.4).

Let Σ be a typed alphabet. For two symbols a1, a2 ∈ Σ, the concatenation w = a1 ·a2 is

only defined when #out(a1) = #in(a2). The type of the resulting string w is (#in(a1) →

#out(a2)). Kleene closure on Σ is defined as follows:

Σ+ = { a1 . . . an | n ≥ 1,#outΣ(ai) = #inΣ(ai+1) for 1 ≤ i < n, a1, . . . , an ∈ Σ } ,

Σ∗ = { (λ, n → n) | n ∈ N } ∪ Σ+.

Here (λ, n → n) denotes the empty string of type (n → n) (note that there is no such

thing as a (λ, m → n) where m 6= n). For a nonempty string w ∈ Σ∗, α = a1 . . . an the

input type of w, denoted #inΣ(w), is #inΣ(a1). The output type, denoted #outΣ(w), is

#outΣ(an). A string w ∈ Σ∗ of type (m → n) can be denoted (w, m → n). Note that Σ∗

is a typed set.

A string w = a1 . . . an over a typed alphabet Σ is called correctly internally typed if

#outΣ(ai) = #inΣ(ai+1) for all 1 ≤ i < n. Note that, by the above definition of Kleene

closure on a typed set, Σ∗ consists of exactly all correctly internally typed strings over Σ.

Concatenation of two strings v, w ∈ Σ∗ is only defined when the output type of the first



10 Definitions

matches the input type of the second. So for (v, m → n) and w, n → k) we define:

(v, m → n) · (w, n → k) = (vw, m → k).

Note that for a string v ∈ Σ∗ all substrings of w are also in Σ∗. By definition of a substring,

the empty string (λ, n → n) is a substring of v iff there is a symbol a ∈ Σ in v such that

#inΣ(a) = n or #outΣ(a) = n.

As with symbols, we will use the terms ordinary string and typed string to discriminate

between the two.

2.4 Typed languages

A typed language L is a set of correctly internally typed strings over some typed alphabet

Σ, such that all strings have the same type:

∀w1,w2∈L (#in(w1) = #in(w2) and #out(w1) = #out(w2)) .

A typed language L in which all strings are of type (m → n) can be denoted (L, m → n)

when clarity demands it. We say that L is of type (m → n). If necessary, the input and

output type can be denoted as follows: #in(L) = m and #out(L) = n. In the case of the

empty language of type (m → n), we need to write (∅, m → n) to make its type explicit.

If m = n, L is called of uniform type. Note that a typed language that contains the empty

string λ must necessarily be of uniform type: a typed λ always has the same input and

output type, say (λ, k → k), for some k ∈ N, and all strings in L have the same type, so

L has type (k → k).

Concatenation, union, and Kleene closure are defined on typed languages over the same

alphabet Σ in the following way (let (L, m → n), (L1, m1 → n1) and (L2, m2 → n2) be

typed languages).

• L1 · L2 = { w1 · w2 | w1 ∈ L1 and w2 ∈ L2 }, in the case that n1 = m2, and undefined

otherwise. Note that L1 · L2 is of type (m1 → n2),

• L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }, in the case that m1 = m2 and n1 = n2, and

undefined otherwise. Note that L1 ∪ L2 is of type (m1 → n1),

• L∗ =
⋃∞

k=0 Lk, in the case that m = n, and undefined otherwise. Here Lk denotes L, k

times concatenated to itself. L0 denotes the appropriate unity element, {(λ, m → m)}

in this case. Note that L∗ is of type (m → m).



Typed grammars 11

Finally, when we want to stress the fact that a string language is not typed, we will refer

to it as an ordinary string language. For a typed string language L, the ordinary string

language L′ such that L and L′ contain exactly the same strings (albeit those in L are

typed, and those in L′ are not) is called the underlying language of L′.

For a class K of ordinary string languages, we denote by Lτ (K) the class of all typed

languages whose underlying languages are in L(K). Note that since we use X to denote

L(X), Lτ (X) denotes Lτ (L(X)).

As a “philosophical” sidenote: normally we would consider two languages equal iff they

contain exactly the same strings. In order to remain faithful to this intuitive concept, we

will allow a typed language L1 and a nontyped language L2 to be equal to each other, albeit

that nonetheless there is a difference: the strings in L1 have a type associated with them,

those in L2 do not. This (non)typing, however, is not considered to be all that important

for the essence of the language, it is merely something that is added on for convenience.

We will write: L1 = L2.

If all this sounds counter-intuitive, notice that something similar is being done in or-

dinary formal language theory, where two languages over different alphabets can be the

same, provided only a common subset of symbols from both alphabets is actually used in

the two languages.

In other words: not where the symbol came from (the one alphabet or the other)

matters, but what the symbol is.

Note that from this point of view L(CF) = Lτ (CF)! (Proof: assign type (0 → 0)

to all symbols.) So when we write L ∈ Lτ (CF) formally speaking we could just as well

have dropped the τ . However, in what follows we will implicitly assume that the τ in

L ∈ Lτ (CF) means that we have a fixed typing in mind for that L.

Unfortunately, this also prohibits us from writing L1 = L2, if, for two typed languages

L1, L2, we want to express that they are equal and also have the same typing defined on

them (or = would not be an equivalence relation anymore, something we certainly do not

want to happen). Therefore, we will write L1 =τ L2 instead, if we want to express that

L1 = L2 and L1, L2 ⊆ Σ∗ for some typed alphabet Σ, i.e., L1 and L2 are equal even with

the typing. Note that =τ indeed is an equivalence relation.

2.5 Typed grammars

A context-free grammar G = (N, T, P, S) where N and T are typed alphabets is called

typed, if for every production p : A → α, A ∈ N , α ∈ (N ∪ T )∗, A and α are of the

same type. Be aware that the Kleene closure is over a typed alphabet, so α is a correctly

internally typed string with respect to N ∪ T . Let G′ = (N ′, T ′, P ′, S ′) be the underlying



12 Definitions

grammar of G, i.e., N ′ = N , T ′ = T (albeit there is no typing defined on N ′ and T ′),

P ′ = P , and S ′ = S. We now define L(G), the typed language generated by the typed

grammar G:

L(G) =







L(G′), typed according to T if L(G′) 6= ∅,

(∅,#inN(S) → #outN(S)) if L(G′) = ∅

Warning : note that this definition only makes sense if L(G′) is a typed language with

respect to T . That this is indeed the case, will be proved in the next section, where we

will also prove that L(G) is always of the same type as S.

When we want to stress the fact that a grammar is not typed, we will refer to it as an

ordinary grammar.

We extend the notation G(X), all grammars with a certain property, (for example,

X = CF), to Gτ (X), all typed grammars whose underlying grammar is in G(X).

2.6 Typed languages versus typed grammars

Context-free typed languages and typed grammars are equivalent in the sense that every

typed grammar generates a context-free typed language, and that every context-free typed

language is generated by some context-free typed grammar. Formally:

∀G∈Gτ (CF) L(G) ∈ Lτ (CF),

and

∀L∈Lτ (CF) ∃G∈Gτ (CF) L =τ L(G).

(2.1)

Part 1:

Firstly, we will prove that for every typed context-free grammar G, we have L(G) ∈

Lτ (CF)3. Let G = (N, T, P, S) ∈ Gτ (CF), and G′ = (N ′, T ′, P ′, S ′) the underlying gram-

mar of G. Now for every production p : A → α, A ∈ N , α ∈ (N ∪ T )∗, we have, by

definition, #inN(A) = #in(N∪T )(α), and #outN(A) = #out(N∪T )(α). To start with, we

will prove that for every derivation:

G′ : S ′ ⇒∗ α,

where α ∈ (N ′ ∪ T ′)∗, we have that:

• α is correctly internally typed with respect to N ∪ T , and,

3Formally speaking, this is trivially true (by definition)! Recall however the above warning that we still

need to verify that the definition is correct. This verification is what the now following proof is about.



Typed languages versus typed grammars 13

• with respect to N ∪ T , α is of the same type as S ′.

We proceed by induction on the length of the derivation. Induction basis: length is 0.

There is only one derivation of length 0: S ′ ⇒0 S ′, for which both conditions trivially hold.

Induction step: length is k + 1. We assume that our claim holds for length k. Consider a

derivation of length k + 1, which has the form:

S ′ ⇒k α
p
⇒ β.

To prove: β is correctly internally typed, and has the same type as S ′. Let the production

applied in the last step be p : A′ → γ. Then α must have the form α′A′α′′, and consequently

β the form α′γα′′. As α is correctly typed internally, by the induction hypothesis, so are

α′ and α′′. And, as A′ has the same type as γ, and γ is correctly typed internally (both

by the definition of p), necessarily β is correctly typed internally also. Furthermore, as

obviously β has the same type as α, and, by the induction hypothesis, α has the same type

as S ′, it is clear that β has the same type as S ′. End of induction proof.

Now for any w ∈ T ′∗ in L(G′), i.e., S ′ ⇒∗ w, w has the same type as S ′ with respect to

N∪T , and is correctly internally typed with respect to N∪T . As an important consequence,

we now have verified that L(G′) is indeed a correctly typed language with respect to T ,

which ensures that the definition of the language generated by a typed languages (see the

previous section) is indeed meaningful.

Consequently, all the above statements also hold for L(G), and, hence, L(G) is a typed

language of type (#inN(S) → #outN(S)). Therefore, L(G) ∈ Lτ (CF), which completes

the first part of the proof.

Part 2:

Secondly, for a given context-free typed language L ∈ Lτ (CF) over some typed alphabet

Σ, we will construct a context-free typed grammar G ∈ Gτ (CF) such that L =τ L(G). We

distinguish three cases:

• L = (∅, m → n), for some m, n ∈ N, or,

• L = {(λ, n → n)}, for some n ∈ N, or,

• none of the above.

The first two cases are almost trivial. If L = (∅, m → n), it is generated by the context-

free typed grammar ({(S, m → n)},∅,∅, S). If L = {(λ, n → n)}, it is generated by

the context-free typed grammar ({(S, n → n)},∅, {S → (λ, n → n)}, S). The last case



14 Definitions

(“none of the above”), is the difficult one. There, choose4 an ordinary, reduced, λ-free,

context-free grammar G = (N, T, P, S) (where T = Σ) such that L − {λ} = L(G) (albeit

that there is a typing associated with L, and not with L(G)). Now extend G to a typed

grammar by defining functions #in and #out on N and T . Take #inT (a) = #inΣ(a),

and #outT (a) = #outΣ(a), for every a ∈ T . For a nonterminal A ∈ N , define #inN and

#outN in the following way: if A ⇒∗ w in G (with w ∈ T+) then #inN(A) = #inΣ(w),

and #outN(A) = #outΣ(w). Such a w always exists, as G is reduced and λ-free.

That this definition is consistent, i.e., if A ⇒∗ v, and A ⇒∗ w, then v and w are of

the same type, is quite straightforward. Choose an arbitrary derivation S ⇒∗ uAz (where

u, z ∈ T ∗), the existence of which is guaranteed by the reachability of A. Because G is

context-free we now have S ⇒∗ uvz and S ⇒∗ uwz. As uvz, uwz ∈ L ⊆ Σ∗ we know that

#inΣ(v) = #outΣ(u) = #inΣ(w), and #outΣ(v) = #inΣ(z) = #outΣ(w)5. Together

with the usefulness of A this consistency guarantees that #inN(A), and #outN(A), are

always properly defined.

Left to show that the thus defined typing functions on N ∪ T indeed make G a typed

grammar, i.e., that G satisfies the restriction that for all productions p : A → α, α must

be a correctly internally typed string over N ∪ T , of the same type as A. Suppose α has

the following form:

α = w0A1w1 . . . wn−1An−1wn,

where w0, . . . , wn ∈ T ∗, and A1, . . . , An−1 ∈ N . By the reducedness of G, there now exist

derivations Ai ⇒∗ vi, where vi ∈ T ∗, for all 1 ≤ i < n. So:

A ⇒∗ w0v1w1 . . . wn−1vn−1vn = z.

By the reachability of A, there exists a u ∈ L, such that z is a substring of u. As u is

correctly internally typed, so is z. Furthermore, as for all Ai ⇒∗ vi, 1 ≤ i < n, Ai and

vi have the same type, α is also correctly internally typed, and α has the same type as z,

which is the type of A.

Because we did not modify G in any way (we only extended N and T to be typed) the

thus typed grammar obviously generates L−{λ}. We now distinguish two cases. First case:

λ /∈ L. This means L(G) =τ L, so we have arrived at the typed grammar G we are looking

for. Second case: λ ∈ L. By adding the production S → (λ,#inN(S) → #outN(S)) to P

4Such a grammar always exists. See for example [HU79, §4.4].
5These expressions are trickier than one might perceive at first sight. Note that we require a u and z to

be there. This in effect means that when u or z should happen to be “empty” we will use the empty typed

string of the appropriate type to represent them. In this case that would amount to (λ,#in(L) → #in(L))

for u, and likewise, (λ,#out(L) → #out(L)) for z. The reader should be alert for this “trick” which

occurs several times in the chapters to follow (see also the index under “lambda trick”).



Typed languages versus typed grammars 15

we can extend the typed grammar G in such a way that L(G) =τ L. Note that necessarily

#inN(S) = #outN(S): as L is a typed language that contains a λ, it must be of uniform

type. This completes the proof that for every L ∈ Lτ (CF) there exists a G ∈ Gτ (CF) such

that L =τ L(G).

Finally, note that in proving (2.1) the only use we made of CF was that all languages

in L(CF) are context-free and all grammars in G(CF) are λ-free reducible. Consequently,

we can easily extend it to other classes than CF. Let X be a property of grammars such

that L(X)  L(CF) and G(X) λ-free reducible, then:

∀G∈Gτ (X) L(G) ∈ Lτ (X),

and

∀L∈Lτ (X) ∃G∈Gτ (X) L =τ L(G).

(2.2)

In particular, the equivalence of typed languages with typed grammars holds for the prop-

erties RLIN, LIN, and DB (this is not trivial, but checking the conditions is beyond the

scope of this thesis).





Leibniz spoke of it first, calling it geometria situs. This

branch of geometry deals with relations dependent on

position alone, and investigates the properties of position.

— Leonhard Euler 3
I/O-hypergraphs

In this chapter, we will define the kind of graphs we will be working with. Instead of

taking the standard definition of a directed graph, where edges stand for 2-sequences of

nodes, we will generalize to hypergraphs, where the hyperedges stand for n-sequences of

nodes. The reason for this is, that we want to compare our method to a well-known type

of context-free graph grammar that works with hypergraphs.

Furthermore, we will define a sequence of input nodes, and a sequence of output nodes.

Hence the name: i/o-hypergraphs. This we do because in that way we can easily define

operations (read: sequential composition) on our graphs; our main operation will take two

graphs, and then “hook” the output nodes of the first to the input nodes of the second,

thereby former a larger graph, just like railroad cars are hooked together to form a train.

3.1 Definition

Let ∆ be a ranked alphabet. An i/o-hypergraph H over ∆ is a 6-tuple (V, E,nod, lab,

in,out) where V is the finite set of nodes1, E is the finite set of (hyper)edges, nod : E → V ∗

is the incidence function, lab : E → ∆ is the labeling function, in ∈ V ∗ is the sequence of

input nodes and out ∈ V ∗ is the sequence of output nodes.

If necessary, we can denote these components by VH , EH , nodH , labH , inH and outH

respectively, in order to avoid possible confusion with other hypergraphs. It is required

1Traditionally, nodes are sometimes also called vertices.

17



18 I/O-hypergraphs

that for every e ∈ E, rank∆(lab(e)) = |nod(e)|. If nod(e) = (v1, . . . , vn), n ∈ N, then vi

is also denoted by nod(e, i), and we say that e and vi are incident. In the same fashion, if

in = (v1, . . . , vn), then vi is denoted in(i), and similarly for out. Furthermore, we define

#in(H) = |in| and #out(H) = |out|, the length of the input and output sequences.

Where convenient, we may choose to view in and out as being sets. In such a case, they

denote the sets { in(i) | 1 ≤ i ≤ |in| } and {out(i) | 1 ≤ i ≤ |out| } respectively.

Finally, we assume the reader to be experienced in the problem of concrete versus

abstract graphs (where an abstract graph is a class of isomorphic concrete graphs). As

usual in the theory of graph grammars we consider graph languages (to be defined for

hypergraphs in Section 3.7) to consist of abstract graphs; however, in all our constructions

we deal with concrete graphs (taking an isomorphic copy when necessary). The notion of

isomorphism is the obvious one, preserving the incidence structure, the edge labels, and

the sequences of input and output nodes.

3.2 Terminology

Let H be the hypergraph (V, E,nod, lab, in,out). For v ∈ V , by deg(v) we denote the

number of edges incident with v, its degree. We extend this notation to H by defining

deg(H) = max({deg(v) | v ∈ VH }).

An i/o-hypergraph with m input nodes and n output nodes is said to be of type (m → n).

Where convenient, it is called of input type m and of output type n. An i/o-hypergraph

of type (n → n) is called of uniform type n. An i/o-hypergraph of type (0 → 0) is called

simple. An i/o-hypergraph H such that no node v ∈ VH appears more than twice in inH ,

nor in outH , is called identification free.

For a ranked alphabet ∆ the set of all i/o-hypergraphs over ∆ is denoted by HGR(∆).

Note that HGR(∆) is a typed set, under the following2 typing functions: for all H ∈

HGR(∆), #inHGR(∆)(H) = #in(H) and #outHGR(∆)(H) = #out(H). The set of all

i/o-hypergraphs of type (m → n) over ∆ is denoted by HGRm,n(∆). Finally, by HGR,

we denote the set of all hypergraphs (not restricted to some fixed alphabet).

From now on, unless the context proves otherwise, the word “hypergraph” is used as a

synonym to “i/o-hypergraph”.

2Note that the left-hand side refers to #in, the input type of a typed set, and the right-hand side to

#in, the length of the input sequence of H



Depiction of hypergraphs 19

3.3 Depiction of hypergraphs

Sometimes, instead of just formally defining a hypergraph, we will also give a graphical

(hypergraphical?) representation of it. In depicting a hypergraph H we will follow the

following conventions (almost literally adopted from [EH91, page 331]). A node of H is

indicated by a fat dot, as usual, and an edge e of H is indicated by a box containing

lab(e), with a thin line between e and nod(e, i), labeled by a tiny i. These lines (or the

corresponding integers) are also called the tentacles of the hyperedge e. An edge e with

two tentacles (i.e., with |nod(e)| = 2) may also be drawn as a thick directed line from

nod(e, 1) to nod(e, 2), with label lab(e), as usual in ordinary graphs. The input nodes

inH(i) are indicated by a label i to the left of the nodes, the output nodes outH(i) by a

label i to the right of the nodes.

In the following example, of a hypergraph H = (V, E,nod, lab, in,out) of type (4 → 3),

all conventions can be observed.

b

a

bu1, 3 u

u4 1

u2 2

u 3

�c

�
�

�
�

�
�

�
��

�
�

�
�

�
�

@
@

@
@

@
@1 2, 3

1

3

2

Here V = {v1, v2, v3, v4, v5}, E = {e1, e2, e3, e4}, nod(e1) = (v1, v2, v2), nod(e2) = (v2, v1),

nod(e3) = (v2, v4, v3), nod(e4) = λ, lab(e1) = b, lab(e2) = c, lab(e3) = b, lab(e4) = a,

in = (v1, v3, v1, v5), and out = (v5, v3, v4).

There is only one hypergraph that cannot be satisfactorily depicted by these conven-

tions: the “empty” hypergraph (∅,∅,∅,∅, λ, λ), which has no nodes, and no edges. We

will depict it by a big ∅ symbol.



20 I/O-hypergraphs

3.4 Ordinary graphs

Ordinary (directed) graphs, that is hypergraphs where all edges are incident with exactly

two nodes, are special cases of hypergraphs. In other words: a hypergraph over a ranked

alphabet ∆ is an ordinary graph iff for all symbols a ∈ ∆, rank∆(a) = 2. For an ordinary

graph H, an edge e ∈ EH such that nodH(e, 1) = nodH(e, 2) (i.e., both tentacles of e are

incident with the same node) is called a loop.

On ordinary graphs we will define the notion of cutwidth. Let H be an ordinary graph,

and suppose that |VH | = n. Now a bijection f : VH → {1, . . . , n} is called a linear layout

of H. A cut is one of the numbers i with 1 ≤ i < n. Intuitively, H is cut between node

f−1(i) and f−1(i + 1)), and by the width of cut i is meant the number of edges that cross

this cut, i.e., those edges e for which either f(nod(e, 1)) ≤ i and f(nod(e, 2)) > i, or

f(nod(e, 2)) ≤ i and f(nod(e, 1)) > i. The cutwidth of H under f , denoted cw(H, f),

is the maximum number of edges e, for all 1 ≤ i < n, for which either f(nod(e, 1)) ≤ i

and f(nod(e, 2)) > i, or f(nod(e, 2)) ≤ i and f(nod(e, 1)) > i. Thus, cw(H, f) is the

maximal width of all cuts. The cutwidth of H, denoted cw(H), is defined as follows:

cw(H) = min({ cw(H, f) | f is a linear layout of H }). (3.1)

The following lemma on cutwidth gives as absolute upper bound on the cutwidth of any

given ordinary graph, as a function of the number of nodes it has. For a given ordinary

graph H, over some alphabet ∆, and a linear layout of f of H the cutwidth of H is bounded

by 1
2

· deg(H) · |VH |:

∀H∈HGR(∆)
f :VH→[|VH |]

cw(H, f) ≤
1

2
· deg(H) · |VH | . (3.2)

The proof is trivial, as obviously cw(H, f) ≤ |EH |, and clearly, by elementary graph theory,

|EH | ≤ 1
2
· deg(H) · |VH |. Therefore, no more than 1

2
· deg(H) · |VH | edges can possibly be

cut in any linear layout. This observation immediately leads to the following, somewhat

weaker, lemma:

∀H∈HGR(∆) cw(H) ≤
1

2
· deg(H) · |VH | . (3.3)

Finally, a linear layout f : VH → {1, . . . , n} may intuitively be thought of as the sequence

(f−1(1), . . . , f−1(n)) of all nodes in H.

3.5 String graphs

An ordinary graph where all edges “lie in line” is called a string graph. This is due to

the fact that every string can be uniquely represented as a string graph. For example, the



String graphs 21

string:

abacab

corresponds to the following string graph (i.e. ordinary graph, i.e. hypergraph):

-a -b -a -c -a -bu u u u uu1 u 1

Formally, for an ordinary string w = a1 . . . an over an alphabet Σ, the string graph corre-

sponding with it, denoted gr(w), is defined as follows:

gr(w) = (V, E,nod, lab, in,out),

where V = {v0, . . . , vn}, E = {e1, . . . , en},

nod(ei) = (vi−1, vi) and lab(ei) = ai, for 1 ≤ i ≤ n,

in = (v0),out = (vn).

Note that by this definition, gr(λ) consists of just one node, and no edges (as one would

expect), and:

∀w1,w2∈Σ∗ gr(w1 · w2) = gr(w1) · gr(w2). (3.4)

The function gr : Σ∗ → HGR(Σ) is, as can be easily checked, injective. In other words:

no two different strings are ever mapped to the same string graph, so, as noted, a string

graph uniquely represents a certain string. The degree of a string graph is a direct function

of the length of the underlying string. For a string w:

deg(gr(w)) =







0 if |w| = 0,

1 if |w| = 1,

2 if |w| ≥ 2.

(3.5)

Therefore, a string graph H always has deg(H) ≤ 2. Finally, note that a string graph

never contains a loop, as can be directly seen in the definition.

Now for a class K of hypergraph languages, by STR(K) we denote the class of all

ordinary string languages L such that gr(L) ∈ K:

STR(K) = { L |gr(L) ∈ K } .

Note that STR(K) is a class of string languages, not hypergraph languages, and fur-

thermore that for every class K of hypergraph languages, and every class K of string



22 I/O-hypergraphs

languages:

STR(gr(K)) = K (3.6)

gr(STR(K)) ⊆ K. (3.7)

3.6 External versus internal nodes

Nodes that are either input nodes, output nodes, or both, are called external nodes. Two

hypergraphs H1 = (V1, E1,nod1, lab1, in1,out), H2 = (V2, E2,nod2, lab2, in2,out2) are

said to be equal modulo i/o, denoted H1 ≡io H2, when V1 = V2, E1 = E2, nod1 = nod2,

and lab1 = lab2. In other words, H1 ≡io H2 holds when H1 is equal to H2, except possibly

for their input or output sequences. Note that ≡io is an equivalence relation, and that in

terms of external nodes a simple hypergraph is just a hypergraph with no external nodes.

This notation is extended to sets of hypergraphs in the following way. For two sets

of hypergraphs L1 and L2 we have L1 ≡io L2 if for every H ∈ L1 there exists a H ′ ∈ L2

such that H ≡io H ′, and, vice versa, for every H ∈ L2 there exists a H ′ ∈ L1 such that

H ≡io H ′.

Nodes that are not external are called internal nodes.

3.7 Hypergraph languages

A hypergraph language over a ranked alphabet ∆ is a set of hypergraphs L ⊆ HGR(∆).

We require that all hypergraphs in L be of type (m → n). L is called of type (m → n).

Like hypergraphs, when L is of type (n → n), it is called of uniform type n. Where

convenient, we will write (L, m → n) instead of just L, to explicitly express the type. The

empty language must have a type too. The empty hypergraph language of type (m → n)

is almost always denoted (∅, m → n) because its type cannot simply be derived from the

hypergraphs within it, as is the case with a nonempty hypergraph language.

The notion of a type extends to classes of hypergraph languages. When a class K of

hypergraph languages only contains hypergraph languages of type (m → n) it is also called

of type (m → n). Otherwise, it is called of mixed type. Note that there is no such thing as

a hypergraph language of mixed type3.

When L contains exactly one hypergraph, it is called a singleton hypergraph lan-

guage. For a set of hypergraphs (not necessarily a hypergraph language) L, Sing(L)

3It is very well possible to put hypergraphs of different types in one set, but that is not a hypergraph

language as far as our definition is concerned.



Union of hypergraph languages 23

denotes the class of all singleton hypergraph languages in P(L): Sing(L) = {L
′ | L

′ ⊆

L and L
′ is a singleton}. This class Sing(L) is called the singleton class derived from L.

A hypergraph language L is said to be of bounded degree k if for all graphs H ∈ L, the

degree of H is ≤ k. A hypergraph language L that contains only ordinary graphs, is said

to be of bounded cutwidth k (where k ∈ N) if for all graphs H ∈ L the cutwidth of H is

≤ k.

3.8 Union of hypergraph languages

For two hypergraph languages L1 = (V1, m → n) and L2 = (V2, m → n) of the same type,

the union of both is defined as the hypergraph language L3 = L1 ∪L2 = (V1 ∪V2, m → n).

Note that the resulting hypergraph language is also of type (m → n). The empty language

of type (m → n), (∅, m → n), is the unity element of this union.

Actually we are defining countably infinite union operators: one for every type (m → n).

When convenient, we will write ∪m,n instead of just ∪ to make clear we are applying the

union operator to hypergraph languages of type (m → n).





Text processing has made it possible to

right-justify any idea, even one which

cannot be justified on any other grounds.

— J. Finnigan 4
Composition

In this chapter we will define two binary operations on hypergraphs: sequential composition

(the main one), and parallel composition. Using these operations it is possible to take

several hypergraphs and use them to build a larger one.

4.1 Sequential composition

The sequential composition of two hypergraphs H1 and H2, denoted H1 ·H2, is only defined

when #out(H1) = #in(H2). One finds H1 · H2 by first taking the disjoint union of H1

and H2, and then identifying the ith node of outH1 with the ith node of inH2 , for every

1 ≤ i ≤ #out(H1). The resulting graph H1 · H2 has inH1 as input node sequence, and

outH2 as output node sequence. Formally, H1 · H2 is defined as:

((VH1 ∪ VH2)/≡, EH1 ∪ EH2 , (nodH1 ∪ nodH2)≡, labH1 ∪ labH2 , [inH1 ]≡, [outH2 ]≡),

where ≡ is the smallest equivalence relation on VH1 ∪VH2 that contains the following pairs:

{ (outH1(i), inH2(i)) | 1 ≤ i ≤ #out(H1) } .

All this is supposing H1 and H2 are disjoint. If not, we take an isomorphic copy. The

result of the sequential composition of two hypergraphs is also called their product. Note

that the product of two hypergraphs is an ordinary graph iff both hypergraphs are also

ordinary.

25



26 Composition

Actually we are defining countably infinite sequential composition operators: one for

every (m, n, k) ∈ N3. When convenient, we will write ·m,n,k instead of just · to make clear

we are applying the · operator to a H1 of type (m → n) and a H2 of type (n → k), for all

Σ a typed alphabet:

·m,n,k : HGRm,n(Σ) × HGRn,k(Σ) → HGRm,k(Σ).

For every n ∈ N we define a hypergraph Un, called the unity hypergraph of type (n → n):

Un = ({v1, . . . , vn},∅,∅,∅, (v1, . . . , vn), (v1, . . . , vn)).

So, for example, U4 is:

u

u

u

u

4 4

3 3

2 2

1 1

Note that Un indeed is of type (n → n), that for every hypergraph H of input type n we

have

Un · H = H, (4.1)

and for every hypergraph G of output type n similarly

G · Un = G. (4.2)

The unity hypergraph of type (0 → 0), U0, is also called the empty hypergraph, for obvious

reasons.

The sequential composition can also be applied to two hypergraph languages, provided

the output type of the first matches the input type of the second. Let L1 = (V1, m → n)

and L2 = (V2, n → k) be hypergraph languages. Now the hypergraph language L3 = L1·L2

is defined as follows:

L3 = ({H1 · H2 | H1 ∈ V1, H2 ∈ V2}, m → k) . (4.3)

The sequential composition operation is associative, although proving this is surprisingly

hard. Sketch of proof is as follows. Take disjoint hypergraphs H1, H2, and H3. Now by



Sequential composition versus degree and loops 27

completely writing out the expressions H1 · (H2 · H3) and (H1 · H2) · H3 by the definition,

in both cases we arrive at hypergraphs that are isomorphic to:

((VH1 ∪ VH2 ∪ VH3)/≡, EH1 ∪ EH2 ∪ EH3 , (nodH1 ∪ nodH2 ∪ nodH3)≡,

labH1 ∪ labH2 ∪ labH3 , [inH1 ]≡, [outH3 ]≡).

Where ≡ denotes the smallest equivalence relation on VH1 ∪ VH2 ∪ VH3 , that contains the

following pairs:

{ (outH1(i), inH2(i)) | 1 ≤ i ≤ #out(H1) } ,

{ (outH2(i), inH3(i)) | 1 ≤ i ≤ #out(H2) } .

It can be easily seen that in general H1 · H2 6= H2 · H1, so the sequential composition

operation is noncommutative. However, when both H1 and H2 are simple hypergraphs the

sequential composition operation is commutative, as in that case it reduces to just taking

the disjoint union of both hypergraphs.

The symbol
∏

stands for a repeatedly applied sequential composition:

n∏

i=1

Hi = H1 . . . Hn, (4.4)

for all n ∈ N, n 6= 0.

Sequential composition is also often called concatenation, because of the analogy with

string concatenation1. We may write the shorthand version H1H2 for H1 · H2.

Because of the associativity of the concatenation we can define Kleene closure on uni-

form hypergraph languages. For a hypergraph language L of uniform type n:

L
∗ =

∞⋃

k=0

L
k,

where L
k denotes L, k times concatenated to itself. L

0 denotes the appropriate unity

element, {Un} in this case. Note that L
∗ is again of uniform type n.

4.2 Sequential composition versus degree and loops

Sequential composition can only increase the degree of the hypergraphs involved. Formally

expressed:

∀H1,H2∈HGR(∆)







deg(H1 · H2) ≥ deg(H1),

deg(H1 · H2) ≥ deg(H2).
(4.5)

1To summarize: “sequential composition” and “concatenation” are synonyms, and can stand for both

the operation and for the result. The word “product” always denotes the result, and never the operation.



28 Composition

The proof is trivial, as in the process of sequential composition, a node always remains

incident with all the edges it was incident with before. Therefore, the degree of the product

must be at least the degree of the original two hypergraphs. The degree of the product

can be larger, however. This is the case when during identification two or more nodes that

have edges attached to them get merged in such a way that the total degree of the resulting

node is larger than the degree of the original hypergraphs. We can generalize (4.5) to the

product of n hypergraphs in the following way:

∀H1,...,Hn∈HGR(∆) deg

(
n∏

i=1

Hi

)

≥ max ({deg(Hi) | 1 ≤ i ≤ n }) . (4.6)

Regarding loops, note that by the definition of sequential composition, for hypergraphs

H, H1, H2, such that H = H1 · H2, if H1, or H2, or both, contain a loop, then H itself also

contains a loop.

As a special cases of these properties, for a string graph H, and hypergraphs H1, . . . , Hn,

such that H = H1 . . . Hn, for all Hi, 1 ≤ i ≤ n, deg(Hi) ≤ 2. Proof: as H is a string graph,

deg(H) ≤ 2 (see Section 3.5), and the result directly follows from (4.6). Furthermore, as

H (being a string graph) does not contain a loop, neither does Hi, for 1 ≤ i ≤ n.

4.3 Parallel composition

The parallel composition of two hypergraphs H1 and H2, denoted H1 + H2, is always

defined. One finds H1 + H2 by taking the disjoint union of H1 and H2, and putting

inH1+H2 = inH1 · inH2 and outH1+H2 = outH1 · outH2 . Formally, H1 + H2 is defined as:

(VH1 ∪ VH2 , EH1 ∪ EH2 ,nodH1 ∪ nodH2 , labH1 ∪ labH2 , inH1 · inH2 ,outH1 · outH2),

All this is supposing H1 and H2 are disjoint. If not, we take an isomorphic copy. The

result of the parallel composition of two hypergraphs is called their sum.

The unity element of the parallel composition is the empty hypergraph, U0. It can be

easily verified that for every hypergraph H we have U0 +H = H and likewise H +U0 = H.

The parallel composition acts on unity hypergraphs in the following way:

Un + Um = Un+m. (4.7)

The parallel composition operation is associative. The proof, which directly follows from

the associativity of ∪ and · (on sequences) is very easily accomplished by writing out in

full (H1 + H2) + H3 and H1 + (H2 + H3) where H1, H2, H3 ∈ HGR(Σ) for some Σ, and

H1, H2, H3 mutually disjoint. Both expressions yield the same hypergraph:

(V1∪V2∪V3, E1∪E2∪E3,nod1∪nod2∪nod3, lab1∪lab2∪lab3, in1·in2·in3,out1·out2·out3),



Sequential versus parallel composition 29

which proves the associativity of +.

The parallel composition H1 + H2 is commutative when one or both of H1 and H2 are

simple hypergraphs, but not in general.

The symbol
∑

stands for a repeatedly applied parallel composition:

n∑

i=1

Hi = H1 + · · · + Hn, (4.8)

for all n ∈ N, n 6= 0. For the case n = 0 we define
∑0

i=1 Hi = U0.

By the associativity of + on both natural numbers and hypergraphs we can now can

generalize (4.7) to:

m∑

k=1

Unk
= U(

∑m

k=1
nk). (4.9)

The parallel composition can also be applied to two hypergraph languages. Let L1 =

(V1, m1 → n1) and L2 = (V2, m1 → n2) be hypergraph languages. Now the hypergraph

language L3 = L1 + L2 is defined as follows:

L3 = ({H1 + H2 | H1 ∈ V1, H2 ∈ V2}, m1 + m2 → n1 + n2) .

Note that L3 is by definition of type (m1 + m2 → n1 + n2).

4.4 Sequential versus parallel composition

The basic relationship between the sequential and parallel composition is as follows:

(H1 + H2) · (H ′1 + H ′2) = H1H
′
1 + H2H

′
2, (4.10)

where we require that #outH1 = #inH2 , and #outH1 = #inH2 . Sketch of proof is

as follows. By completely writing out the left-hand and right-hand expression by the

definitions, we arrive in both cases at:

((VH1 ∪ VH2 ∪ VH′

1
∪ VH′

2
)/≡, EH1 ∪ EH2 ∪ EH′

1
∪ EH′

2
,

(nodH1 ∪ nodH2 ∪ nodH′

1
∪ nodH′

2
)/≡, labH1 ∪ labH2 ∪ labH′

1
∪ labH′

2
,

(inH1 · inH2)/≡, (outH′

1
· outH′

2
)/≡).

Where ≡ denotes the smallest equivalence relation on VH1 ∪VH2 ∪VH′

1
∪VH′

2
, that contains

the following pairs:

{

(outH1(i), inH′

1
(i)) | 1 ≤ i ≤ #out(H1)

}

,



30 Composition

{

(outH2(i), inH′

2
(i)) | 1 ≤ i ≤ #out(H2)

}

.

All this is, or course, supposing that H1, H2, H ′1, and H ′2 are mutually disjoint. If not, we

take isomorphic copies.

By repeatedly applying (4.10) to itself we get, for all n ∈ N, n ≥ 1:

(H1 + · · · + Hn) · (H ′1 + · · · + H ′n) = H1H
′
1 + · · · + HnH

′
n, (4.11)

under the condition that H1H
′
1, . . . , HnH

′
n are all defined. Proof by induction on n. The

induction basis (n = 1) is trivially fulfilled: (H1) · (H ′1) = H1H
′
1. Induction step, assuming

the induction hypothesis holds for n = k:

(H1 + · · · + Hk+1) · (H ′1 + · · · + H ′k+1) =(adding parentheses)

((H1 + · · · + Hk) + Hk+1) · ((H ′1 + · · · + H ′k) + H ′k+1)
(4.10)
=

(H1 + · · · + Hk) · (H ′1 + . . . H ′k) + Hk+1H
′
k+1 =(induction hypothesis)

(H1H
′
1 + · · · + HkH

′
k) + Hk+1H

′
k+1 =(removing parentheses)

H1H
′
1 + · · · + Hk+1H

′
k+1,

which proves (4.11). Note that we can rephrase this equation as:

(
n∑

i=1

Hi

)

·





n∑

j=1

H ′j



 =
n∑

i=1

HiH
′
i. (4.12)

This relation too can be made more general by repeatedly applying it to itself, which

ultimately gives us the most general case:

m∏

i=1

n∑

j=1

Hij =
n∑

j=1

m∏

i=1

Hij. (4.13)

for every m, n ∈ N, m, n ≥ 1. Proof by induction on m (only). Induction basis (m = 1):

1∏

i=1

n∑

j=1

Hij

(4.4)
=

n∑

j=1

Hij

(4.4)
=

n∑

j=1

1∏

i=1

Hij.

Induction step, assuming the induction hypothesis holds for m = k:

k+1∏

i=1

n∑

j=1

Hij

(4.4)
=





k∏

i=1

n∑

j=1

Hij



 ·
n∑

j=1

H(k+1)j =(induction hypothesis)



Expressions used as a function 31





n∑

j=1

k∏

i=1

Hij



 ·
n∑

j=1

H(k+1)j
(4.4)
=





n∑

j=1

k∏

i=1

Hij



 ·





n∑

j=1

k+1∏

i=k+1

Hij




(4.12)
=

n∑

j=1





(
k∏

i=1

Hij

)

·





k+1∏

i=k+1

Hij








(4.4)
=

n∑

j=1

k+1∏

i=1

Hij,

which proves (4.13). Note that (4.10) is just the case m = 2, n = 2 of (4.13), and (4.11) is

just the case m = 2.

Furthermore, for simple hypergraphs H1 and H2 we have:

H1 · H2 = H1 + H2.

Finally, the · operator has precedence over the + operator.

4.5 Expressions used as a function

Let H , G : V → HGR(∆) be functions, with a common input domain V , that yield

hypergraphs over some ranked alphabet ∆. We now define two new functions F1, F2 :

V → HGR(∆). For all v ∈ V :

F1(v) = H(v) · G(v),

F2(v) = H(v) + G(v).

In the case that V = HGR(∆) we also define F3, F4, F5, F6 : V → HGR(∆). For all

v ∈ V :

F3(v) = v · H(v),

F4(v) = H(v) · v,

F5(v) = v + H(v),

F6(v) = H(v) + v.

(These six new functions need not be complete.) These constructions deserve their own

notation: we may notate these ad hoc functions F1, . . . , F6 as H ·G, H +G, ·H , H·, +H ,

and H+ respectively. When we consider a hypergraph H ∈ HGR(∆) as a function that



32 Composition

returns H for every v ∈ V , we may now write expressions like “+Un”, the function that

adds the unity hypergraph of uniform order n to its input, or, by recursively applying this

new notation, “(+flip)·backfold”. (flip and backfold are total functions on hypergraphs,

that will be defined in Section 6.1). Finally, we may do the same thing for functions that

yield hypergraph languages.



”What’s one and one and one and one and one

and one and one and one and one and one?”

”I don’t know,” said Alice. ”I lost count.”

— Lewis Carroll 5
Decomposition

Sequential and parallel composition are essentially about taking small hypergraphs and

using them to build larger ones. But we can also do the opposite: take a large hypergraph,

and try to break it down in smaller hypergraphs. This process is called decomposition.

In this chapter we will try to find a “small” set of “small” hypergraphs that can be used

to build all other hypergraphs. The result will be useful in defining the class of all “regular”

hypergraph languages (see Chapter 10) and in finding a normal form for interpreters (see

Chapter 7).

5.1 Definition

Let L, L′ ⊆ HGR be sets of hypergraphs. We now write L
·

−→ L
′, pronounced L decom-

poses sequentially into L
′, if for every H ∈ L there exist H1, . . . , Hn ∈ L

′, n ≥ 1, such

that H =
∏n

i=1 Hi. In words: every graph H in L can be built from graphs in L
′ by just

using sequential composition.

If we also allow parallel composition to be used, we write L
·,+
−→ L

′, pronounced L fully

decomposes into L
′. In words: for every H ∈ L there exist H1, . . . , Hn ∈ L

′ such that H

can be built using just H1, . . . , Hn, ·, and +. Formally: L is a subset of the smallest set of

hypergraphs that contains L
′ and is closed under · and +.

It can easily be seen that both
·

−→ and
·,+
−→ are reflexive, transitive relations, and that

sequential decomposition implies full decomposition. In the sections to follow we will

construct sets LA, LB, and LC such that HGR
·

−→ LA
·

−→ LB
·,+
−→ LC . The last step will

33



34 Decomposition

involve several substeps.

5.2 HGR ·−→ LA

We define LA as follows:

LA = { H ∈ HGR | all nodes v ∈ VH are external }.

Now to prove HGR
·

−→ LA it suffices to prove that:

∀H∈HGR ∃H1,H2∈LA
H = H1 · H2.

For a given H we can always construct such a H1 and H2 by making all nodes in H external,

resulting in H1, and constructing H2 (without edges) in such a way that only the nodes

that are supposed to be external are passed through. Formally, let

H = (V, E,nod, lab, in,out) : p → q.

Furthermore, let {v1, . . . , vn} be the set of internal nodes of H. We now define:

H1 = (V, E,nod, lab, in,out · (v1, . . . , vn)) : p → q + n,

H2 = ({w1, . . . , wq+n},∅,∅,∅, (w1, . . . , wq+n), (w1, . . . , wq)) : q + n → q.

We now have H = H1 · H2.

Example:

Let H be the hypergraph of type (1 → 1), with 2 internal nodes (so p = q = 1 and n = 2),

depicted by:

H = u1 �
�

�
�

�
�

�
�

���

@
@

@
@

@
@

@
@

@@R

u��
�

�
�

�

�
�

���

u
@

@
@

@
@

@

@
@

@@R

u 1�



LA
·

−→ LB 35

Then H1 and H2 are of type (1 → 3) and (3 → 1) respectively, and look as follows:

H1 = u1 �
�

�
�

�
�

�
�

���

@
@

@
@

@
@

@
@

@@R

u 3�
�

�
�

�
�

�
�

���

u 2
@

@
@

@
@

@

@
@

@@R

u 1� H2 =

u3

u2

u1 1

Note that the edge labels have been left out, as they are irrelevant for the construction.

5.3 LA
·−→ LB

We define LB as follows:

LB = { H ∈ LA | |EH | ≤ 1 }.

Now to prove LA
·

−→ LB it suffices to prove that:

∀H∈LA,|EH |>1 ∃H1,H2∈LA
(H = H1 · H2 and |EH1 | < |EH | and |EH2 | < |EH |) .

For a given H we can always construct such a H1 and H2 by picking an edge e and reroute

it outside H: H1 ≈ H − {e}, H2 ≈ {e}. Formally, let:

H = (V, E,nod, lab, in,out) : p → q,

and choose an edge e ∈ E. Suppose |nod(e)| = n. We now define:

H1 = (V, E − {e},nod � (E − {e}), lab � (E − {e}), in,out · nod(e)) : p → q + n,

H2 = ({w1, . . . , wq+n}, {e}, e 7→ (wq+1, . . . , wq+n),

e 7→ lab(e), (w1, . . . , wq+n), (w1, . . . , wq)) : q + n → q.

We now have H = H1 · H2, |EH1 | = |EH | − 1 < |EH |, and |EH2 | = 1 < |EH |. This method

to remove an edge by sequential decomposition is called edge removal.

Example:

Let H be the hypergraph, of type (4 → 2) (so p = 4 and q = 2), depicted by:



36 Decomposition

H =

u3

u2, 4

u1

c2

��������
1

b2

PPPPPPPP
3

��������
1

a

�
�

�
�

�
�

��
2

1

u 2

u 1

Then applying edge removal at the edge labeled b (so n = 3), yields the hypergraphs H1

and H2, of type (4 → 5) and (5 → 2) respectively, that look as follows:

H1 =

u3

u2, 4 4

u1

c2

��������
1

a

�
�

�
�

�
�

��
2

1

u 2, 5

u 1, 3

H2 =

u5

u4

u3

u2 2

u1 1

b

��������
3

2

PPPPPPPP

1

5.4 LB
·−→ LC2 ∪ LC3

First we define sets LC1 , LC2 , and LC3 as follows:

LC1 = { Ωa | a a ranked symbol } ,

LC2 = { H ∈ LB | |EH | = 0 } ,

LC3 = { H ∈ LB | ∃n∈N,a a ranked symbol H = Un + Ωa } ,

where Ωa, for rank(a) = n, is defined as follows:

Ωa = ({v1, . . . , vn}, {e}, e 7→ (v1, . . . , vn), e 7→ a, (v1, . . . , vn), λ).

For example, when a has rank 5,

Ωa = ({v1, v2, v3, v4, v5}, {e}, e 7→ (v1, v2, v3, v4, v5), e 7→ a, (v1, v2, v3, v4, v5), λ) =



LC3

·,+
−→ LC1 ∪ LC2 37

u5

u4

u3

u2

u1

aXXXXXXXXXXXX

HHHHHHHHHHHH

������������

������������ 5

4

3

2

1

Now to prove LB
·

−→ LC2 ∪ LC3 , take an H ∈ LB. If |EH | = 1, sequentially decompose it

into H1 and H2 using edge removal. We now have: H = H1H2, H1 ∈ LC2 and H2 ∈ LC3

(note that H2 = Uq + Ωlab(e), for the q and e as meant in the definition of edge removal).

If |EH | 6= 1, it must be 0, so H ∈ LC2 . This completes the proof.

5.5 LC3

·,+
−→ LC1 ∪ LC2

Proof. For all H ∈ LC3 , H = Un + Ωa for some n ∈ N and a a ranked symbol. But

Un ∈ LC2 and Ωa ∈ LC1 , so LC3

·,+
−→ LC1 ∪ LC2 . This completes the proof.

5.6 LC2

·,+
−→ LC4 ∪ LC5

Define sets LC4 and LC5 as follows:

LC4 = {1m,n | m, n ∈ N, (m, n) 6= (0, 0) } ,

LC5 = { Ππ,π′,k | π, π′ permutations of (1, . . . , k), k ∈ N } .

Here 1m,n is defined as follows:

1m,n = ({v},∅,∅,∅, (v, . . . , v)
︸ ︷︷ ︸

m times

, (v, . . . , v)
︸ ︷︷ ︸

n times

).

For example,

13,2 = ({v},∅,∅,∅, (v, v, v), (v, v)) =

u1, 2, 3 1, 2



38 Decomposition

Furthermore, Ππ,π′,k is defined as follows. Suppose π = (i1, . . . , ik) and π′ = (j1, . . . , jk).

Ππ,π′,k = ({v1, . . . , vk},∅,∅,∅, (vi1 , . . . , vik), (vj1 , . . . , vjk
))

For example,

Π(2,1,3),(3,1,2),3 = ({v1, v2, v3},∅,∅,∅, (v2, v1, v3), (v3, v1, v2)) =

u3 1

u1 3

u2 2

This kind of hypergraph is called a permutation hypergraph. Note that it is overkill to

use two permutations, as both can always be combined into one. For technical reasons

however (the symmetry allows us to specify the inverse permutation by swapping π and

π′) we choose to use two.

Choose an H ∈ LC2 . Suppose |VH | = k, V = {v1, . . . , vk}, and H : m → n. Now H

can always be sequentially decomposed as follows1:

H = Hπ · Hσ · Hπ′ .

Here Hσ : m → n is defined as follows. Let pi indicate the number of occurrences of vi

in inH , and p′i the number of occurrences of vi in outH . Note that for all 1 ≤ i ≤ k,

(pi, pi′) 6= (0, 0) as H ∈ LB.

Hσ =
k∑

i=1

1pi,p
′

i

This Hσ we now have is almost equal to H, albeit that in and out have been “sorted”:

inHσ
= sort(inH) and outHσ

= sort(outH). This is illustrated by the following example:

H = ({v1, v2, v3, v4},∅,∅,∅, (v1, v4, v3), (v1, v3, v2, v2)) =

1In order to avoid confusion: the π, π′ and σ in Hπ, Hπ′ and Hσ are just used as a subscript, and have

no meaning of their own. So, the π in Hπ is not a permutation. It is only used to give a hint that Hπ will

be defined as a permutation graph.



LC2

·,+
−→ LC4 ∪ LC5 39

u2

u3 2

u 3, 4

u1 1

Now:

Hσ = 11,1 + 10,2 + 11,1 + 11,0

= ({v1, v2, v3, v4},∅,∅,∅, (v1, v3, v4), (v1, v2, v2, v3)) =

u3

u2 4

u 2, 3

u1 1

Note that (v1, v3, v4) = sort((v1, v4, v3)) and (v1, v2, v2, v3) = sort((v1, v3, v2, v2)) (where

vi ≤ vj ⇐⇒ i ≤ j). Now consider a permutation (a1, . . . , am) of (1, . . . , m) such that:

inH(a1) ≤ · · · ≤ inH(am),

so we have (inH(a1), . . . , inH(am)) = sort(inH). Similarly, consider a permutation (b1, . . . ,

bn) of (1, . . . , n) such that:

outH(b1) ≤ · · · ≤ outH(bn),

so we have (outH(b1), . . . ,outH(bn)) = sort(outH). Now define Hπ = Π(1,...,m),(a1,...,am),m

and Hπ′ = Π(b1,...,bn),(1,...,n),n. So, continuing the previous example we have: (a1, a2, a3) =

(1, 3, 2) and (b1, b2, b3, b4) = (1, 3, 4, 2)2, and so:

Hπ = ({v1, v2, v3},∅,∅,∅, (v1, v2, v3), (v1, v3, v2)),

Hπ′ = ({v1, v2, v3, v4},∅,∅,∅, (v1, v3, v4, v2), (v1, v2, v3, v4)).

2Note that these permutations need not be uniquely determined. For example, we could have chosen

(1, 4, 3, 2) instead of (1, 3, 4, 2) for (b1, b2, b3, b4)



40 Decomposition

Hπ =

u3 2

u2 3

u1 1

Hπ′ =

u3 4

u2 3

u4 2

u1 1

Now, applying the permutation (a1, . . . , am) to inH results in sort(inH), and likewise,

applying (b1, . . . , bn) to outH in sort(outH). As inHσ
= sort(inH), and outHσ′

=

sort(outH), we now have H = Hπ ·Hσ ·Hπ′ . This completes the proof that L2
·,+
−→ L4∪L5.

5.7 LC4

·,+
−→ LC6

Define LC6 as follows:

LC6 = { U0,10,1,11,0,11,2,12,1, X } ,

where X = ({v1, v2},∅,∅,∅, (v1, v2), (v2, v1)). Graphically, LC6 looks as follows:







∅, u 1, u1 , u1 1, 2, u1, 2 1,
u1 2

u2 1







The following induction steps now suffice to fully decompose LC4 into LC6 :

11,1 = 11,2 · 12,1,

1m+1,1 = (1m,1 + 11,1) · 12,1 for m ≥ 1,

11,n+1 = 11,2 · (11,n + 11,1) for n ≥ 1,

1m,n = 1m,1 · 11,n for m, n ∈ N.

Therefore, LC4

·,+
−→ LC6 .



LC5

·,+
−→ LC6 41

5.8 LC5

·,+
−→ LC6

Choose an H ∈ L5. Suppose |VH | = n. By definition, we now have that outH is a permu-

tation π of inH . From combinatorics/algebra it is well known3 that every permutation π be

can decomposed into permutations π1, . . . , πk where each of the permutations πi only swaps

two neighboring elements. Using these permutations πi we can sequentially decompose H:

H = Π(1,...,n),π,n =
k∏

i=1

Π(1,...,n),πi,n.

These hypergraphs Π(1,...,n),πi,n are obviously of the form:

11,1 + · · · + 11,1 + X + 11,1 + · · · + 11,1,

so we have fully decomposed LC5 into LC6 . Therefore, LC5

·,+
−→ LC6 . As a consequence of

this, and by the previous sections, LC2

·,+
−→ LC6 .

5.9 LB
·,+
−→ LC

We define LC as follows: LC = LC1 ∪ LC6 . By the transitivity of
·,+
−→, and because

·
−→

implies
·,+
−→, the results of the previous sections now justify the conclusion LB

·,+
−→ LC .

5.10 Conclusions

In trying to decompose HGR a result (not the strongest) we got with sequential decom-

position was

HGR
·

−→ LB.

This set LB is called the sequential pseudo base set, because all graphs in HGR can be

built from it, using just sequential composition. Note that it is not finite, and by no means

minimal, as LB can be further sequentially decomposed. (for example to LC2 ∪ LC3 , and

further). For these reason, it is only a pseudo base. There does not exist a “real” sequential

base set (finite, minimal), as HGR contains hypergraphs of type (m → n) for arbitrarily

large m, n ∈ N, and by sequential composition it is not possible to “pump up” the type of

hypergraph.

Using full decomposition we ultimately arrived at

HGR
·,+
−→ LC .

3See for example Knuth, [Knu73, §5.1], or Herstein, [Her75, §2.10].



42 Decomposition

This set LC is called the full base set because all graphs in HGR can be built from it, using

both sequential and parallel composition. Contrary to the sequential pseudo base set, at

least for a fixed edge label alphabet, the full base set is minimal: it cannot be further

decomposed (into a proper subset). Furthermore, for a fixed edge label alphabet, the full

base set is finite. Formally, by LC “for a fixed edge label alphabet ∆”, we mean LC ∩

HGR(∆). That this set is indeed minimal under this condition can be easily understood

from the following considerations:

• For a fixed label alphabet ∆, all hypergraphs Ωa, for a ∈ ∆, are really needed,

because without all of them, we would be unable to generate hypergraphs that contain

hyperedges labeled a for all a ∈ ∆,

• U0 is really needed, as it obviously cannot be built from any other hypergraph other

than itself,

• 10,1 and 11,0 are really needed, as without them we could not generate edge-less

hypergraphs with internal nodes. Sketch of proof: in all other edge-less hypergraphs

in LC , i.e, {U0,11,2,12,1, X}, all nodes are both input and output nodes. This prop-

erty clearly remains invariant under both sequential and parallel composition. End

of sketch. That 10,1 and 11,0 are both needed can be shown by similar arguments.

Intuitively, 10,1 and 11,0 are needed to be able to “get rid of external nodes”.

• 11,2 and 12,1 are really needed, as without them we could only generate identification-

free hypergraphs. Sketch of proof: all other hypergraphs in LC are identification-

free, and this property remains invariant under both parallel composition (trivial)

and sequential composition (almost trivial). End of sketch. Again, the fact that 11,2

and 12,1 are both needed can be show by similar arguments.

Intuitively, 11,2 and 12,1 are needed to be able to “split up external nodes”.

• X is really needed, as without it we could only generate hypergraphs H such that

for all 1 ≤ i < j ≤ #in(H), 1 ≤ i′ < j′ ≤ #in(H), such that inH(i) 6= inH(j) and

outH(i′) 6= outH(j′), not both inH(i) = outH(j′) and inH(j) = outH(i′). Sketch

of proof: this property holds for all other hypergraphs in LC , and remains invariant

under both parallel composition (trivial), and sequential composition (almost trivial).

End of sketch.

Intuitively, X is needed to be able to “permute external nodes”.

We do not know whether HGR(∆) can be fully decomposed into another minimal set that

has less elements, but that eventuality seems highly unlikely.



Fold: to bend over or double up so

that one part lies on another part.

— The American Heritage Dictionary 6
Folds and flips

In this chapter we will define four natural functions on hypergraphs: fold, backfold, flip,

and split. They exhibit several nice properties that make them very suitable for building

the constructions needed to prove two classes of hypergraph languages equal.

6.1 Definition

Put H = (V, E,nod, lab, in,out) : m → n, and define the following unary operations flip,

fold, backfold, and split on H:

flip(H) = (V, E,nod, lab,out, in) : n → m,

fold(H) = (V, E,nod, lab, λ, in · out) : 0 → m + n,

backfold(H) = (V, E,nod, lab, in · out, λ) : m + n → 0.

Put H = (V, E,nod, lab, (v1, . . . , vm), (vm+1, . . . , vm+n)) : m → n, and define the unary

operation splitp,q on H for all p, q ∈ N, m + n = p + q:

splitp,q(H) = (V, E,nod, lab, (v1, . . . , vp), (vp+1, . . . , vp+q)) : p → q.

Recall that λ denotes the empty sequence, and · denotes the concatenation of sequences.

Note that these operations only manipulate the input and output sequences, the V , E,

nod, and lab components are not changed.

43



44 Folds and flips

We will use the flip, fold, backfold, and split as verbs where convenient, for example

as in “(6.33) is proved by flipping both sides of (6.32)”, i.e., by applying the operation flip

to both sides of the equation.

6.2 Basic properties

These definitions lead to, amongst others, the following properties. Let H be of type

(m → n), and p, q, p′, q′ ∈ N such that p + q = p′ + q′ = m + n.

splitm,n(H) = H, (6.1)

flip(flip(H) = H, (6.2)

flip(fold(H)) = backfold(H), (6.3)

flip(backfold(H)) = fold(H), (6.4)

fold(fold(H)) = fold(H), (6.5)

fold(backfold(H)) = fold(H), (6.6)

fold(splitp,q(H)) = fold(H), (6.7)

backfold(fold(H)) = backfold(H), (6.8)

backfold(backfold(H)) = backfold(H), (6.9)

backfold(splitp,q(H)) = backfold(H), (6.10)

splitp,q(fold(H)) = splitp,q(H), (6.11)

splitp,q(backfold(H)) = splitp,q(H), (6.12)

splitp,q(splitp′,q′(H)) = splitp,q(H). (6.13)

There are no simpler expressions in terms of flip, fold, backfold, and split for the ex-

pressions fold(flip(H)), backfold(flip(H)), splitp,q(flip(H)), and flip(splitp,q(H)). Fur-

thermore we have, directly from the definitions, the following properties:

#in(flip(H)) = #out(H), (6.14)

#out(flip(H)) = #in(H), (6.15)

#in(fold(H)) = 0, (6.16)

#out(fold(H)) = #in(H) + #out(H), (6.17)

#in(backfold(H)) = #in(H) + #out(H), (6.18)

#out(backfold(H)) = 0, (6.19)

#in(splitp,q(H)) = p, (6.20)



Derived properties 45

#out(splitp,q(H)) = q. (6.21)

As previously noted, the flip, fold, backfold, and split operations only manipulate the

input and output sequences (recall from Section 3.6 that ≡io is an equivalence relation):

H ≡io flip(H) ≡io fold(H) ≡io backfold(H) ≡io splitp,q(H). (6.22)

The flip operation is linked to sequential and parallel composition in the following way:

flip(G · H) = flip(H) · flip(G), (6.23)

flip(G + H) = flip(G) + flip(H), (6.24)

flip(Un) = Un. (6.25)

As it turns out, splitp,q can be expressed in terms of fold and backfold, and vice versa.

So, in a sense, either split, or fold and backfold are superfluous. In practice we need

both of them, as some concepts are more elegantly expressed in folds and backfolds, others

in splits. The relations between them are as follows:

fold(H) = split0,#in(H)+#out(H)(H), (6.26)

backfold(H) = split#in(H)+#out(H),0(H), (6.27)

splitp,q(H) = (Up + fold(Uq)) · (backfold(H) + Uq). (6.28)

We extend split to apply to classes of hypergraph languages. Let K be any class of

hypergraph languages.

split(K) = { splitp,q(L) | L ∈ K and p, q ∈ N, p + q = #in(L) + #out(L) }

(6.29)

Note that now, by (6.26) and (6.27), we have:

fold(K) ⊆ split(K) (6.30)

backfold(K) ⊆ split(K) (6.31)

The above properties are easily verified by expanding the respective definitions.

6.3 Derived properties

A few properties that can be derived from the basic properties are listed below. They

are illustrated in Appendix B, and will be used in Section 8.1 (page 57) and Section 8.2

(page 64) where they are needed in an induction proof.

fold(H2) · (flip(H1) + H3) = fold(H1H2H3), (6.32)



46 Folds and flips

(H1 + flip(H3)) · backfold(H2) = backfold(H1H2H3), (6.33)

both under the condition that H1H2H3 is defined.

(H1 + fold(H3)) · (backfold(H2) + H4) = H1H2H3H4, (6.34)

(fold(H2) + flip(H4)) · (flip(H1) + backfold(H3)) = flip(H1H2H3H4), (6.35)

under the condition that H1H2H3H4 is defined.

(fold(H2) + fold(H4)) · (flip(H1) + backfold(H3) + H5) = fold(H1H2H3H4H5), (6.36)

(H1 + fold(H3) + flip(H5)) · (backfold(H2) + backfold(H4)) = backfold(H1H2H3H4H5),

(6.37)

under the condition that H1H2H3H4H5 is defined.

Note that by flipping both sides of (6.32), (6.34), or (6.36), we get (6.33), (6.35), or

(6.37) respectively, and vice versa. The above six properties can be proved from the basic

properties, albeit in a highly nontrivial way. See also Section B.1.



Be aware of bugs in the above code; I have

only proved it correct, not tried it.

— Donald Ervin Knuth 7
Interpretation

In this chapter we devise a method to interpret a string as a hypergraph. As this method

can be extended to interpret string languages as hypergraph languages, and classes of string

languages as classes of hypergraph languages, we can instantly define a lot of classes of

hypergraph languages. For example, from LIN, all linear languages, we instantly derive

Int(LIN), all linear languages under interpretation as hypergraph languages.

7.1 Definition of an interpreter

Let Σ be a typed alphabet, and ∆ a ranked alphabet. Let h be a function, h : Σ →

HGR(∆), that is type preserving, that is, it must satisfy the condition that for every

a ∈ Σ the hypergraph h(a) is of the same type as the symbol a. Let w be a string from

Σ∗, w = a1 . . . an. Now extend h to Σ∗ in the following way: h(w) = h(a1) . . . h(an).

Furthermore, if w = (λ, n → n), we define h((λ, n → n)) as Un. By the definition of h and

· we now have, for all v, w ∈ Σ∗:

h(vw) = h(v)h(w), (7.1)

provided vw is defined. By the associativity of · on both strings and hypergraphs this

generalizes to:

h

(
n∏

k=1

wk

)

=
n∏

k=1

h(wk), (7.2)

47



48 Interpretation

provided, again,
∏n

k=1 wk is defined.

The 3-tuple (Σ, ∆, h) is called an interpreter, and h is called the interpretation function.

For an interpreter I, we will denote its three components by ΣI , ∆I , and hI respectively.

Let L be a typed string language over a typed alphabet Σ, and I = (Σ, ∆, h) an

interpreter. Now, I is called an interpreter for L.

7.2 Definition of Int

Let L be a typed string language and I an interpreter for L. We now define IntI(L), the

interpretation of L under I to be the hypergraph language:

IntI(L) = { hI(w) | w ∈ L } . (7.3)

Note that IntI(L) ⊆ HGR(∆I). We can extend Int to interpret one specific language as

a class of hypergraph languages, without specifying an interpreter. The generic interpre-

tation of L, denoted Int(L) is defined as follows:

Int(L) = { IntI(L) | I an interpreter for L } . (7.4)

We extend Int to classes of languages. Let K be a class of ordinary string languages. We

now define Int(K), the generic class interpretation of K, as follows:

Int(K) = { IntI(L) | L ∈ Lτ (K), I an interpreter for L } . (7.5)

Recall that L ∈ Lτ (K) means that the underlying language of L is in K. By the definition

of an interpreter IntI(L) is always of the type (#in(L) → #out(L)). A generic interpre-

tation Int(L) or a class interpretation Int(K) is always of mixed type. Finally, we define

three different kinds of typed class interpretation (let m, n ∈ N):

Intm→(K) = { L ∈ Int(K) |#in(L) = m } ,

Int→n(K) = { L ∈ Int(K) |#out(L) = n } ,

Intm→n(K) = { L ∈ Int(K) |#in(L) = m and #out(L) = n } .

These last three definitions lead immediately to the following two sequences of inclusions:

Intm→n(K) ⊆ Intm→(K) ⊆ Int(K), (7.6)

Intm→n(K) ⊆ Int→n(K) ⊆ Int(K). (7.7)

Finally, note that for an ordinary alphabet Σ, and an ordinary language L over Σ, by (3.4)

and (7.1), we can express the hypergraph language gr(L) of string graphs in terms of Int:

gr(L) = IntI(L), (7.8)



Examples of interpretation 49

where I = (Σ′, ∆, h), Σ′ = Σ such that all symbols a ∈ Σ′ have type (1 → 1). Note that

L is correctly typed with respect to Σ′. Furthermore, ∆ = Σ†, and h(a) = gr(a)‡ for all

a ∈ Σ. We can prove (7.8) as follows:

gr(L) =(set theory)

{gr(w) | w ∈ L } =(rewriting w as symbols)

{gr(a1 . . . an) | a1 . . . an ∈ L }
(3.4)
=

{gr(a1) . . . gr(an) | a1 . . . an ∈ L } =(definition of h)

{ h(a1) . . . h(an) | a1 . . . an ∈ L }
(7.2)
=

{ h(a1 . . . an) | a1 . . . an ∈ L } =(rewriting symbols as w)

{ h(w) | w ∈ L }
(7.3)
=

IntI(L).

As a consequence of all this, for all classes K of ordinary string languages:

gr(K) ⊆ Int(K). (7.9)

7.3 Examples of interpretation

In order to understand more clearly what interpretation is all about, let us take a look at

three examples of it. For the sake of simplicity, both only involve ordinary graphs.

Example 1

We define the typed right-linear language L = { abnc | n ∈ N }, and the interpreter I =

(Σ, ∆, h) for L, where Σ = {(a, 1 → 3), (b, 3 → 3), (c, 3 → 1)}, ∆ = {(a, 2), (b, 2), (c, 2)}

(note that by the fact that all ranks in ∆ are 2, I will generate ordinary graphs only), and

h defined as depicted hereafter.

h(a) = u 2, 3

u1 1

h(b) =

u3

u2

u1

u 3

u 2

u 1

-c

�b

-a

h(c) = u3 1

u1, 2

†Albeit ranked instead of typed. All symbols a ∈ ∆ have rank∆(a) = 2.
‡Even though we here seem to be expressing gr in terms of itself, there is really no circularity involved.

We are merely using a finite number of graph constants, namely gr(a) for all a ∈ Σ.



50 Interpretation

Now, h(abnc) = gr(anbncn). For example, for n = 5, h(abbbbbc) is:

u1 -a u -a u -a u -a uHHHHHH
ja

u������
�bu�bu�bu�bu������

�buHHHHHH
jc

u -c u -c u -c u -c u 1

Therefore, IntI(L) = {gr(anbncn) | n ∈ N } = gr ({ anbncn | n ∈ N }) (all of which are of

type (1 → 1)). This is somewhat surprising, as the string language { anbncn | n ∈ N } is

the classic example of a language that is not context-free!

Example 2

As second example, an interpretation that is slightly more difficult. We take the same

right-linear language L = { abnc | n ∈ N }, over the same alphabet Σ, and the interpreter

I = (Σ, ∆, h) for L, where this time ∆ = {a}, and h defined as follows:

h(a) = u 1

u 2, 3

h(b) =

u1 1

u2

u3 3

u 2-

6

h(c) = u1

u2, 3

We omit the edge labels, as they are all a. Now, h(abnc) is the “clockwise spinning wheel

with n spokes”. To understand what we mean by this, look at the case n = 8. Then

h(abbbbbbbbc) is:



Edge Normal Form 51

uA
A

A
A

A
A

K

�
�
�
�
�
�

�

������
*

HHHHHH
j

A
A
A
A
A
A

U

�
�

�
�

�
�

�

������
�

HHHHHH
Y

u - u
@

@
@

R u
?

u
�

�
�

	u�u@
@

@
I

u
6

u��
�

�

Therefore, IntI(L) consists of all such clockwise spinning wheels with n spokes, for all

n ∈ N (all these hypergraphs are simple).

Example 3

Let L be the ordinary string language {a}, and K = {L} the class that only contains L.

Now, Int(K) is the class of all singleton hypergraph languages. This can be easily proved.

First, for every interpreter I for L, IntI(L) obviously only contains one hypergraph (namely

hI(a)), so it is a singleton hypergraph language. Secondly, for every singleton hypergraph

language {H}, we can construct an interpreter I for L such that IntI(L) = {H}, namely

that interpreter that has a 7→ H as interpretation function.

7.4 Edge Normal Form

Using the results on decomposition from Chapter 5 we can derive a normal form for inter-

preters. This normal form is called Edge Normal Form, or ENF for short. An interpreter

I = (Σ, ∆, h) is in Edge Normal Form if for all a ∈ Σ, the hypergraph h(a) contains at

most one edge, and no internal nodes:

∀a∈Σ

(∣
∣
∣Eh(a)

∣
∣
∣ ≤ 1 and Vh(a) = inh(a) ∪ outh(a)

)

.

The following theorem intuitively says that, for almost all classes K, all hypergraph lan-

guages in Int(K) can be obtained using an interpreter in Edge Normal Form.

Edge Normal Form Theorem:

Let K be a class of string languages that is closed under λ-free homomorphisms. Now for

all L ∈ Lτ (K) and I = (Σ, ∆, h) an interpreter for L there exists an L′ ∈ Lτ (K) and an



52 Interpretation

interpreter I ′ = (Σ′, ∆′, h′) for L′ such that I ′ is in ENF and IntI′(L′) = IntI(L).

Proof. As proved in sections 5.2 and 5.3, every hypergraph H can be sequentially decom-

posed in hypergraphs H1, . . . , Hn, where Hi contains at most one edge, and no internal

nodes, for 1 ≤ i ≤ n. For every hypergraph h(a), for a ∈ Σ, choose such a decomposition:

h(a) =
na∏

i=1

Ha,i.

Here na denotes the length of the decomposition for h(a). Let 〈a, i〉 denote an element

from the typed alphabet Σ′, which is defined as follows:

Σ′ = { 〈a, i〉 | a ∈ Σ and 1 ≤ i ≤ na } .

Here the type of a symbol 〈a, i〉 is defined as (#in(Ha,i) → #out(Ha,i)). Now define

the typed language L′ = σ(L) over Σ′, where σ : Σ → Σ′ denotes the following λ-free

homomorphism: for all a ∈ Σ, σ(a) =
∏na

i=1〈a, i〉. Define I ′ = (Σ′, ∆′, h′), where ∆′ = ∆,

and for all 〈a, i〉 ∈ Σ′, h′(〈a, i〉) = Ha,i. Note that by this definition (keep in mind the fixed

decompositions) for all a ∈ Σ, h′(σ(a)) = h(a). We now have: IntI′(L′) = IntI(L). Proof:

IntI′(L′)
(7.3)
=

{ h′(w) | w ∈ L′ } =(definition of L′)

{ h′(w) | w ∈ σ(L) } =(set theory)

{ h′(σ(v)) | v ∈ L } =(definition of h′, σ, and h)

{ h(v) | v ∈ L }
(7.3)
=

IntI(L).

This completes the proof of the Edge Normal Form theorem.

7.5 Existence of isomorphic copies

In a sense, every hypergraph language that can be obtained by interpretation, can be so

in an infinite number of ways. We will formally express this by the following theorem.

Isomorphic Copies Theorem:

For a class K that is closed under isomorphism, a typed language L ∈ K, and an interpreter

I for L, we can always find an L′ ∈ K, and an interpreter I ′ for L′, such that IntI(L) =

IntI′(L′), and L disjoint with L′.



Bounded degree implies bounded cutwidth 53

Proof. Given a hypergraph language L over a ranked alphabet ∆, a typed string language

L over a typed alphabet Σ, and an interpreter I = (Σ, ∆, h) for L, such that IntI(L) = L,

there exists a typed string language L′ over a typed alphabet Σ′ such that L′ = f(L) for

some isomorphism f , and an interpreter I ′ = (Σ′, ∆′, h′) for L′, such that Σ ∩ Σ′ = ∅ and

IntI′(L′) = L:

∀L∈HGR(∆)
L⊆Σ∗

I=(Σ,∆,h)








(IntI(L) = L) =⇒ ∃f :Σ→Σ′ (bijective)
L′⊆Σ′∗

I′=(Σ′,∆′,h′)








Σ ∩ Σ′ = ∅ ∧

f(L) = L′ ∧

IntI′(L′) = L















. (7.10)

This can be proved by taking the following Σ′, f , L′, ∆′, and h′:

Σ′ = { (a′, m → n) | (a, m → n) ∈ Σ } ,

f((a, m → n)) = (a′, m → n), for all (a, m → n) ∈ Σ,

L′ = { a′1 . . . a′n | a1 . . . an ∈ L } ,

∆′ = ∆,

h′(a′) = h(a).

Obviously L′ = f(L). Now for given L, I, and L such that IntI(L) = L we have:

IntI′(L′)
(7.3)
=

{ h′(w′) | w′ ∈ L′ } =(rewriting w′ as symbols)

{ h′(a′1 . . . a′n) | a′1 . . . a′n ∈ L′ }
(7.2)
=

{ h′(a′1) . . . h′(a′n) | a′1 . . . a′n ∈ L′ } =(definition of h, h′, and L′)

{ h(a1) . . . h(an) | a1 . . . an ∈ L }
(7.2)
=

{ h(a1 . . . an) | a1 . . . an ∈ L } =(rewriting symbols as w)

{ h(w) | w ∈ L }
(7.3)
=

IntI(L) =(by definition)

L.

This completes the proof of (7.10), from which the Isomorphic Copies Theorem follows as

a corollary.

7.6 Bounded degree implies bounded cutwidth

By the nature of interpretation, some kinds of hypergraph languages are inherently im-

possible to form. As an example of such a limitation, for all IntI(L) that only contain



54 Interpretation

ordinary graphs, we have that if IntI(L) is of bounded degree, necessarily IntI(L) is also

of bounded cutwidth (see Section 3.4):

Degree versus Cutwidth Theorem:

∀ IntI(L) that
only contain

ordinary graphs

IntI(L) of bounded degree =⇒ IntI(L) of bounded cutwidth. (7.11)

Proof. Denote IntI(L) by L, with L strictly over some typed alphabet Σ, and I = (Σ, ∆, h)

an interpreter for L. Let d be the bound on deg(L), and note that by the definition of

interpretation, the definition of deg(L), and (4.6), now also deg(h(a)) ≤ d for all a ∈ Σ.

Define µ as the maximum number of nodes in any interpreted symbol:

µ = max
({ ∣

∣
∣Vh(a)

∣
∣
∣

∣
∣
∣ a ∈ Σ

})

.

Now define the following property P of H ∈ HGR(∆):

P(H)

⇐⇒

There exists a linear layout w1, . . . , wp, wp+1, . . . , wp+q of H (formally: |VH | = p+q for some

p, q ∈ N, and there exists a linear layout f for H such that f(wi) = i for all 1 ≤ i ≤ p + q)

such that the following three conditions hold:

1. cw(H, f) ≤ dµ,

2. {w1, . . . , wp} = VH − outH ,

3. {wp+1, . . . , wp+q} = outH .

In words: P(H) means that H has a linear layout with cutwidth ≤ dµ, such that all out

nodes come at the end.

We are now going to prove that:

∀H∈L cw(H) ≤ dµ. (7.12)

Let H ∈ L. If H = Un for some n ∈ N, cw(H) = 0, and we are done (this case arises if

(λ, n → n) ∈ L, because then h((λ, n → n)) = Un). Otherwise, by (7.3) and (7.2), there

exists a string a1 . . . an ∈ L, for some n ≥ 1 such that:

H = h(a1 . . . an) = h(a1) . . . h(an).



Bounded degree implies bounded cutwidth 55

So in order to prove cw(H) ≤ dµ, it suffices to prove P(H), or, P(h(a1) . . . h(an)). We will

prove this by proving the following proposition Q(k), which is defined for 1 ≤ k ≤ n, for

k = n:

Q(k) ⇐⇒ P(h(a1) . . . h(ak)).

We will proceed by induction on k.

Induction basis, k = 1:

Q(1) ( ⇐⇒ P(h(a1))), is trivially fulfilled by (3.2), because deg(h(a1)) ≤ d, and
∣
∣
∣Vh(a1)

∣
∣
∣ ≤

µ, and therefore cw(h(a1), f) ≤ 1
2
dµ ≤ dµ for any layout f for h(a1). Hence, a layout

where the out nodes of h(a1) come last will satisfy all three conditions in P(h(a1)). Such

a layout obviously exists, which completes the induction basis.

Induction step, k = m + 1:

Assuming Q(m) ( ⇐⇒ P(h(a1) . . . h(am))), where 1 ≤ m < n, we are now going

to prove Q(m + 1) ( ⇐⇒ P(h(a1) . . . h(am+1))). This is done as follows. Note that

h(a1) . . . h(am+1) = (h(a1) . . . h(am)) · h(am+1). Look at the conditions in the definition

of P(h(a1) . . . h(am+1)). Take as linear layout for h(a1) . . . h(am+1) a layout that starts

with w1, . . . , wp as meant in P(h(a1) . . . h(am)). As none of these nodes were out nodes of

h(a1) . . . h(am), no identification has taken place on them during the concatenation with

h(am+1), and consequently no new edges have become incident with them. Therefore, this

first part of the layout still has cutwidth ≤ dµ.

The remainder of the layout can be chosen at wish, under the restriction that the out

nodes of h(am+1) come last. As this second part of the layout contains at most µ nodes (by

the definition of concatenation), and because deg(h(a1) . . . h(am+1)) ≤ d (by (4.6)), there

can be at most dµ edges running either within this second part, or between this second

part and the first part (formally: there can be at most dµ edges that are incident with a

node in the second part). Therefore, the cut between the first and the second part of the

layout, and the cuts within the second part, all have width ≤ dµ.

The layout thus constructed, as can be easily seen, satisfies the conditions in the def-

inition of P(h(a1) . . . h(am+1)). Therefore, P(h(a1) . . . h(am+1)) holds, and consequently

Q(m + 1) holds also. By induction we have now proven that Q(n) holds, and as an imme-

diate consequence cw(H) ≤ dµ. This completes the proof of (7.12), so cw(L) ≤ dµ.

This theorem puts a clear restriction on the kind of hypergraph languages L that can be

generated using interpretation: an L with bounded degree, but no bounded cutwidth is

fundamentally impossible. An example of such a language L is the language of all ordinary



56 Interpretation

graphs that form binary trees. As Lengauer proved in 1982 [Len82], a complete binary tree

of depth 2k has cutwidth k + 1 (for k ≥ 1). As L contains all complete binary trees, this

means that L is not of bounded cutwidth. Since L is of bounded degree, it cannot be

generated by means of interpretation.

As a final remark, let it be noted that something quite similar has been done for eNCE

graph grammars (a node rewriting based approach), by Engelfriet and Leih in 1989 (see

[EL89, §5]).



We will not give formal correctness proofs of

our constructions, because we feel that these

would only obscure the underlying intuitions.

— Joost Engelfriet and George Leih 8
Power of interpretation

In this chapter we will examine RLIN, LIN, and DB under interpretation. As it turns

out: Int(RLIN) = Int(LIN) = Int(DB). However, Int(RLIN)  Int(CF). We will also

examine Int(STR(Int(K))), and will find that under a few weak conditions on K, it is

equal to Int(K). From these results, we will be able to prove two theorems that nicely

indicate the power of interpretation.

8.1 Int(RLIN) = Int(LIN)

Firstly, to prove Int(RLIN) ⊆ Int(LIN) we only have to observe that RLIN ⊆ LIN. So for

any L ∈ Lτ (RLIN) and I an interpreter for L, there exists an L′ ∈ Lτ (LIN) and an I ′ an

interpreter for L′ such that IntI(L) = IntI′(L′) (namely: L′ = L and I ′ = I). This proves

that Int(RLIN) ⊆ Int(LIN). As a matter of fact this proof extends to any K1 ⊆ K2:

( K1 ⊆ K2 ) =⇒ ( Int(K1) ⊆ Int(K2) ) . (8.1)

Secondly, to prove Int(RLIN) ⊇ Int(LIN) we construct for every L ∈ Lτ (LIN) and I =

(Σ, ∆, h) an interpreter for L an L′ ∈ Lτ (RLIN) and an interpreter I ′ for L′ such that

IntI(L) = IntI′(L′).

Choose a typed linear grammar G = (N, T, P, S) (where T = Σ) such that L(G) = L.

Now construct the following typed right-linear grammar G′ = (N ′, T ′, P ′, S ′), and I ′ an

interpreter for L(G′). Note that from now on we will mostly write h and h′ instead of hI

and h′I respectively, as there can be no confusion.

57



58 Power of interpretation

• I ′ = (Σ′, ∆′, h′), where Σ′ = T ′, ∆′ = ∆, and h′ as defined below.

• N ′ = N ∪ {D}, D /∈ N ,

For A ∈ N ′, A 6= D, #inN ′(A) = #inN(A)+#outN(A)+#out(L), #outN ′(A) =

#out(L). Furthermore, #inN ′(D) = #in(L), and #outN ′(D) = #out(L),

• T ′ = {ap | p ∈ P} ∪ {b},

• P ′ = {p′ | p ∈ P} ∪ {q}.

If p : A → vBw, where A, B ∈ N and v, w ∈ T ∗, then1:

p′ : A → apB,

where h′(ap) = h(v) + flip(h(w)) + U#out(L), #inT ′(ap) = #in(h′(ap)) = #in(v) +

#out(w) + #out(L), and #outT ′(ap) = #out(h′(ap)) = #out(v) + #in(w) +

#out(L).

If p : A → v then:

p′ : A → ap,

where h′(ap) = backfold(h(v)) + U#out(L), #inT ′(ap) = #in(h′(ap)) = #in(v) +

#out(v) + #out(L), and #outT ′(ap) = #out(h′(ap)) = #out(L).

And finally:

q : D → bS,

where h′(b) = U#in(L) + fold(U#out(L)), #inT ′(b) = #in(h′(b)) = #in(L), and

#outT ′(b) = #out(h′(b)) = #in(L) + 2#out(L),

• S ′ = D.

We now claim IntI′(L(G′)) = IntI(L), so L(G′) is the L′ we are looking for. Proof of the

claim by head recursion as follows.

Invariant:

For all H ∈ HGR(∆), A ∈ N , and i ∈ N:

∃v,w∈T ∗

(

G : S ⇒i vAw and H = h(v) + flip(h(w)) + U#out(L)

)

⇐⇒

∃v′∈T ′∗

(

G′ : S ⇒i v′A and H = h′(v′)
)

.

1Note the λ-case! (See also the footnote on page 14.)



Int(RLIN) = Int(LIN) 59

Proof:

By induction on the length of the derivations (= on i):

Induction basis, i = 0:

G : S ⇒0 S,

v = (λ,#in(L) → #in(L)),

w = (λ,#out(L) → #out(L)),

G′ : S ⇒0 S,

v′ = (λ,#in(L) + 2#out(L) → #in(L) + 2#out(L)).

To prove:

h(v) + flip(h(w)) + U#out(L) = h′(v′).

Proof:

h(v) + flip(h(w)) + U#out(L) =(definition of h)

U#in(L) + flip(U#out(L)) + U#out(L)
(6.25)
=

U#in(L) + U#out(L) + U#out(L)
(4.9)
=

U#in(L)+2#out(L) =(definition of h′)

h′(v′).

Induction step (assuming the hypothesis holds for i = n), from left to right, i = n + 1:

Consider a derivation of length n + 1 in G:

G : S ⇒n vAw ⇒1 vuBzw,

where A, B ∈ N , and u, v, w, z ∈ T ∗ with the production p : A → uBz applied in the last

step. By the induction hypothesis, there exists a derivation G′ : S ⇒n v′A, where v′ ∈ T ′∗,

such that:

h′(v′) = h(v) + flip(h(w)) + U#out(L). (8.2)

Let p′ : A → apB be the production of G′ corresponding to p : A → uBz, by the definition

of P ′. We now have:

G′ : S ⇒n v′A ⇒1 v′apB.

To prove:

h′(v′ap) = h(vu) + flip(h(zw)) + U#out(L).



60 Power of interpretation

Proof:

h′(v′ap)
(7.1)
=

h′(v′) · h′(ap)
(8.2)
=

(h(v) + flip(h(w)) + U#out(L)) · h′(ap) =(definition of h′(ap))

(h(v) + flip(h(w)) + U#out(L)) · (h(u) + flip(h(z)) + U#out(L))
(4.11)
=

h(v) · h(u) + flip(h(w)) · flip(h(z)) + U#out(L)
(7.1)
=

h(vu) + flip(h(w)) · flip(h(z)) + U#out(L)
(6.23)
=

h(vu) + flip(h(z)h(w)) + U#out(L)
(7.1)
=

h(vu) + flip(h(zw)) + U#out(L).

A similar proof applies for the direction from right to left. This completes the proof of the

invariant for i = n + 1, and overall proof of the invariant.

Now for any H ∈ IntI(L):

∃v,w,u∈T ∗ G : S ⇒∗ vAw ⇒1 vuw, such that h(vuw) = H,

where A ∈ N , and production p : A → u applied in the last step. Choose such a v, w, u ∈

T ∗. As implied by the invariant:

∃v′∈T ′∗ G′ : S ⇒∗ v′A and h(v) + flip(h(w)) + U#out(L) = h′(v′).

Choose such a v′ ∈ T ′∗. Let p′ : A → ap be the production in P ′ corresponding to p. Then,

G′ : S ⇒∗ v′A ⇒1 v′ap, and:

h′(v′ap)
(7.1)
=

h′(v′) · h′(ap) =(invariant)

(h(v) + flip(h(w)) + U#out(L)) · h′(ap) =(definition of h′(ap))

(h(v) + flip(h(w)) + U#out(L)) · (backfold(h(u)) + U#out(L))
(6.33)
=

backfold(h(v)h(u)h(w)) + U#out(L)
(7.2)
=

backfold(h(vuw)) + U#out(L) =(as h(vuw)=H)

backfold(H) + U#out(L).

And therefore also:

G′ : D ⇒1 bS ⇒∗ bv′A ⇒1 bv′ap,



Int(RLIN) = Int(LIN) 61

and:

h′(bv′ap)
(7.1)
=

h′(b) · h′(v′ap) =(as by definition h′(b)=U#in(L)+fold(U#out(L)))

(U#in(L) + fold(U#out(L))) · h′(v′ap) =(proven above)

(U#in(L) + fold(U#out(L))) · (backfold(H) + U#out(L))
(6.34)
=

U#in(L) · H · U#out(L) · U#out(L) =(unity)

H.

This proves that H ∈ IntI′(L′), so IntI(L) ⊆ IntI′(L′). The proof in the other direction,

IntI(L) ⊇ IntI′(L′), works in the same way. This completes the proof of our claim that

IntI(L) = IntI′(L′), and thus also completes the overall proof Int(RLIN) = Int(LIN).

In order to make the construction we used in this proof more clear, we will give an

example.

Example:

Let L be the typed language { anbcn | n ∈ N }, over the typed alphabet Σ = {(a, 1 →

1), (b, 1 → 1), (c, 1 → 1)}. By elementary formal language theory, this is a linear language

that is not right-linear2. Let I = (Σ, ∆, h) be the interpreter for L defined by Σ as above,

∆ = ((a, 2), (b, 2), (c, 2)), and h = gr. So:

h(a)= u1 -a u 1 h(b)= u1 -b u 1 h(c)= u1 -c u 1

As can be easily seen, for all w ∈ L, h(w) = gr(w), so:

IntI(L) = gr(L) = {gr(anbcn) | n ∈ N } .

We will now apply the construction given at the beginning of this section to find a typed

right-linear grammar G′ and an interpreter I ′ for L(G′), such that IntI′(L(G′)) = IntI(L).

First, we need to choose a typed linear grammar G = (N, T, P, S) (where T = Σ) such

that L(G) = L. We take:

• N = {(S, 1 → 1)},

2Standard procedure to prove this: give a linear grammar that generates L, which proves that L is

indeed linear, and then use the pumping lemma to show that L is not regular, i.e., not right-linear.



62 Power of interpretation

• T = Σ = {(a, 1 → 1), (b, 1 → 1), (c, 1 → 1)},

• P = {p1 : S → aSc, p2 : S → b},

• S = S.

The typed right-linear grammar G′ = (N ′, T ′, P ′, S ′) and the interpreter I ′ = (Σ′, ∆′, h′)

for L(G′) are now, following the construction, defined as:

• Σ′ = T ′ (defined below), ∆′ = ∆, and h′ also as defined below,

• N ′ = {(S, 3 → 1), (D, 1 → 1)},

• T ′ = {ap1 , ap2 , b} (types will be defined below),

• P ′ = {p′1, p
′
2, q},

p′1 : S → ap1S, where ap1 has type (3 → 3), and h′(ap1) = h(a) + flip(h(c)) + U1:

h′(ap1) =

u1 -a u 1

u2 �c u 2

u3 3

p′2 : S → ap2 , where ap2 has type (3 → 1), and h′(ap2) = backfold(h(b)) + U1:

h′(ap2) =

u1 �
�?bu2

u3 1

q : D → bS, where b has type (1 → 3), and h′(b) = U1 + fold(U1):



Int(RLIN) = Int(LIN) 63

h′(b) =

u1 1

u 2, 3

• S ′ = D.

As was previously proved, now IntI′(L(G′)) = IntI(L). Is this plausible? Let us take a

look. It can be easily seen that the very simple typed right-linear grammar G′ generates

the typed language:

L(G′) =
{

ban
p1

ap2
| n ∈ N

}

.

Note that (modulo isomorphy) this is just the language { abnc | n ∈ N } in disguise. The

question now is:

IntI′

({

ban
p1

ap2

∣
∣
∣ n ∈ N

})
?
= {gr(anbcn) | n ∈ N } .

Consider the case n = 2 on the left-hand side:

h′(bap1ap1ap2) =

u1 1

u 2, 3

·

u1 -a u 1

u2 �c u 2

u3 3

·

u1 -a u 1

u2 �c u 2

u3 3

·

u1 �
�?bu2

u3 1

=

u1

u -a u -a u �
�?bu�cu�cuu u u u 1

������

������

XXXXXX

=

u1 u u u u u 1-a -a -b -c -c =

gr(aabcc).



64 Power of interpretation

N.B.: the thin lines in the above denote that the nodes they connect have been identified.

As we have just shown:

h′(ba2
p1

ap2
) = h(a2bc2).

Because instead of 2 we could have taken any n ∈ N, this more or less “proves” that

IntI′(L′) = IntI(L). So, yes, the claim is plausible. This concludes the example of the

construction used to prove Int(RLIN) = Int(LIN).

8.2 Int(RLIN) = Int(DB)

Firstly, it is trivial that Int(RLIN) ⊆ Int(DB) because RLIN ⊆ DB (8.1). Secondly,

to prove Int(RLIN) ⊇ Int(DB) we construct for every L ∈ Lτ (DB) and I = (Σ, ∆, h)

an interpreter for L an L′ ∈ Lτ (RLIN) and an interpreter I ′ for L′ such that IntI(L) =

IntI′(L′).

Choose a typed derivation-bounded grammar G = (N, T, P, S) (where T = Σ) such

that L(G) = L. Now construct the following right-linear grammar G′ = (N ′, T ′, P ′, S ′),

where k denotes the derivation bound of G, and I ′ an interpreter for L(G′).

• I ′ = (Σ′, ∆′, h′), where Σ′ = T ′, ∆′ = ∆, and h′ as defined above,

• N ′ =
(
⋃k

i=1 N ′i
)

∪ {D}, where N ′i = { [A1 . . . Ai] | A1, . . . , Ai ∈ N }.

Intuitively: there exists a nonterminal in N ′ for every sequence of up to k nonter-

minals in N. Furthermore, there is a new nonterminal D.

The type of [A1 . . . An] ∈ N ′ is:

#inN ′([A1 . . . Am]) =

(
m∑

k=1

(#inN(Ak) + #outN(Ak))

)

+ #out(L),

#outN ′([A1 . . . Am]) = #out(L).

Furthermore, #inN ′(D) = #in(L) and #outN ′(D) = #out(L).

• T ′ = {ap | p ∈ P ′}.

Intuitively: there exists a unique terminal for every production in P ′,

• P ′ =
(
⋃

p∈P Q(p)
)

∪ {p0}.

Intuitively: Q(p) comprises a set of productions that “accomplishes” the same in

G′ as p “accomplishes” in G. This will become clearer after Q(p) has been defined.

Furthermore, there is a production p0. For

p : A0 → v1A1v2A2 . . . vn−1An−1vn, v1, . . . , vn ∈ T ∗, A0, . . . , An−1 ∈ N, n ≥ 1,



Int(RLIN) = Int(DB) 65

Q(p) contains the production q(p, [B1 . . . Bm], i) for every [B1, . . . , Bm] ∈ N ′, and

every i, 1 ≤ i ≤ m, such that A0 = Bi, under the condition that m + n − 2 ≤ k.

The production p′ = q(p, [B1 . . . Bm], i) looks as follows:

[B1 . . . Bm] → ap′ [B1 . . . Bi−1A1 . . . An−1Bi+1 . . . Bm]

N.B.:

1. Should [B1 . . . Bi−1A1 . . . An−1Bi+1 . . . Bm] reduce to “[ ]” because m = 1, n = 1,

and i = 1, we will interpret this as the syntactically empty string (in other

words, we will pretend the [ ] is not there at all). When that happens p′ reduces

to the production [B1] → ap′ .

2. Because m+n−2 ≤ k it is guaranteed that [B1 . . . Bi−1A1 . . . An−1Bi+1 . . . Bm] ∈

N ′ (unless, or course, it reduces to [ ]).

3. This condition m + n − 2 ≤ k is not a restrictive one, as the derivation bound-

edness of G guarantees that there is “no need” for sentential forms that contain

more than k nonterminals.

4. Intuitively the above production rewrites the ith nonterminal according to p.

For this production h′(ap′) is defined as follows3:

h′(ap′) = H(B1)+· · ·+H(Bi−1)+H(v1)+· · ·+H(vn)+H(Bi+1)+· · ·+H(Bm)+U#out(L),

where:

H(Bj) = U#in(Bj)+#out(Bj) for 1 ≤ j ≤ i − 1 or i + 1 ≤ j ≤ m,

H(v1) = backfold(h(v1)) for n = 1,

H(v1) = h(v1) for n ≥ 2,

H(vj) = fold(h(vj)) for n ≥ 2 and 2 ≤ j ≤ n − 1,

H(vn) = flip(h(vn)) for n ≥ 2.

Furthermore, we need to define:

#inT ′(ap′) = #in(h′(ap′)) = (
∑m

l=1 (#inN(Bl) + #outN(Bl))) + #out(L),

#outT ′(ap′) = #out(h′(ap′)) =
(
∑i−1

l=1 (#inN(Bl) + #outN(Bl))
)

+
(
∑n−1

l=1 (#inN(Al) + #outN(Al))
)

+
(
∑m

l=i+1 (#inN(Bl) + #outN(Bl))
)

+ #out(L).

3Note the λ-case! (See also the footnote on page 14.)



66 Power of interpretation

And finally:

p0 : D → ap0 [S],

where h′(ap0) = U#in(L) + fold(U#out(L)), #inT ′(ap0) = #in(L), and #outT ′(ap0) =

#in(L) + 2#out(L),

• S ′ = D.

We now have IntI′(L(G′)) = IntI(L), so L(G′) is the L′ we are looking for. Proof by head

recursion as follows:

Invariant:

For all H ∈ HGR(∆), Ai ∈ N , n ≥ 2, and j ∈ N:

∃v1,...,vn∈T ∗









G : S ⇒j v1A1v2 . . . vn−1An−1vn

and

H = h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)









⇐⇒

∃v′∈T ′∗

(

G′ : [S] ⇒j v′[A1 . . . An−1] and H = h′(v′)
)

.

Proof:

In proving this invariant, we reason along the same lines as we did in the proof in Sec-

tion 8.1. Consequently, we will notate somewhat more tersely now, as there is enough

verbatim correspondence between the two proofs as it is. Induction on the length of the

derivations (= on j):

Induction basis, j=0:

G : S ⇒0 S,

n = 2,

v1 = (λ,#in(L) → #in(L)),

v2 = (λ,#out(L) → #out(L)),

G′ : [S] ⇒0 [S],

v′ = (λ,#in(L) + 2#out(L) → #in(L) + 2#out(L)).

To prove:

h(v1) + flip(h(v2)) + U#out(L) = h′(v′).



Int(RLIN) = Int(DB) 67

Proof:

h(v1) + flip(h(v2)) + U#out(L) =(definition of h)

U#in(L) + flip(U#out(L)) + U#out(L)
(6.25)
=

U#in(L) + U#out(L) + U#out(L)
(4.9)
=

U#in(L)+2#out(L) =(definition of h′)

h′(v′).

Induction step, assuming the hypothesis holds for ⇒l, j = l + 1:

Consider a derivation of length l + 1 in G. Such a derivation necessarily consists of a

derivation of length l:

G : S ⇒l v1A1v2 . . . vn−1An−1vn,

followed by a last step in which we apply the production:

p : Ai → w1B1w2 . . . wm−1Bm−1wm.

Firstly, we examine the case where in the last derivation step we are applying a production

that does not have a terminal-only right-hand side (so m ≥ 2), and of that case the subcase

1 < i < n − 1, and n > 2. Then, by the induction hypothesis, there exists a derivation in

G′:

G′ : [S] ⇒l v′[A1 . . . An−1],

such that:

h′(v′) = h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L). (8.3)

Let p′ be the production q(p, [A1 . . . An−1], i) of G′ (which corresponds to applying p in the

current context):

p′ : [A1 . . . An−1] → ap′ [A1 . . . Ai−1B1 . . . Bm−1Ai+1 . . . An−1].

Combining these derivations of length l with these last steps, we now have:

G : S ⇒l v1A1v2 . . . vn−1An−1vn ⇒1 v1A1v2 . . . viw1B1w2 . . . wm−1Bm−1wmvi+1 . . . vn−1An−1vn,

G′ : [S] ⇒l v′[A1 . . . An−1] ⇒1 v′ap′ [A1 . . . Ai−1B1 . . . Bm−1Ai+1 . . . An−1].

Note that from the existence of these derivations we can derive, for 1 ≤ r < n:

#in(Ar) = #out(h(vr)),

#out(Ar) = #in(h(vr+1)),
(8.4)



68 Power of interpretation

which will come in very handy in our proof.

To prove:

h′(v′ap′) = h(v1) + fold(h(v2)) + · · · + fold(h(vi−1)) +

fold(h(viw1)) + fold(w2) + · · · + fold(wm−1) + fold(h(wmvi+1)) +

fold(h(vi+2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L).

Although the expressions in what now follows look quite abhorrent, the steps in between

them are actually very simple. All what happens is some reshuffling of U ’s using (4.9), and

the rewriting of #in(Ai) and #out(Ai), as #out(h(vi)) and #in(h(vi+1)) respectively.

Only in the last step, where we apply (B.2)4, some “real” work is being done.

Proof:

h′(v′ap′)
(7.1)
=

h′(v′) · h′(ap′)
(8.3)
=

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) · h′(ap′) =(definition of h′(ap′ ))

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·







U#in(A1)+#out(A1) + · · · + U#in(Ai−1)+#out(Ai−1) +

h(w1) + fold(h(w2)) + · · · + fold(h(wm−1)) + flip(h(wm)) +

U#in(Ai+1)+#out(Ai+1) + · · · + U#in(An−1)+#out(An−1) + U#out(L)








(4.9)
=

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·







U#in(A1)+#out(A1)+···+#in(Ai−1)+#out(Ai−1) +

h(w1) + fold(h(w2)) + · · · + fold(h(wm−1)) + flip(h(wm)) +

U#in(Ai+1)+#out(Ai+1)+···+#in(An−1)+#out(An−1) + U#out(L)








(8.4)
=

4The “B” in “(B.2)” refers to Appendix B.



Int(RLIN) = Int(DB) 69

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·










U#out(h(v1))+#in(h(v2))+#out(h(v2))+···+#in(h(vi−1))+#out(h(vi−1))+#in(h(vi)) +

h(w1) + fold(h(w2)) + · · · + fold(h(wm−1)) + flip(h(wm)) +

U#out(h(ai+1))+#in(h(vi+2))+#out(h(vi+2))+···+#in(h(vn−1))+#out(h(vn−1))+#in(h(vn)) +

U#out(L)











(4.9)
=

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·










U#out(h(v1)) + U#in(h(v2))+#out(h(v2)) + · · · + U#in(h(vi−1))+#out(h(vi−1)) +

U#in(h(vi)) + h(w1) + fold(h(w2)) + · · · + fold(h(wm−1)) + flip(h(wm)) + U#out(h(ai+1)) +

U#in(h(vi+2))+#out(h(vi+2)) + · · · + U#in(h(vn−1))+#out(h(vn−1)) + U#in(h(vn)) +

U#out(L)











(B.2)
=








h(v1) + fold(h(v2)) + · · · + fold(h(vi−1)) +

fold(h(viw1)) + fold(w2) + · · · + fold(wm−1) + fold(h(wmvi+1)) +

fold(h(vi+2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)








.

The equivalents for the subcases (i = 1 and n > 2), (i = n − 1 and n > 2), and (i = 1 and

n = 2) are not written out in full here, as they are very similar. Most importantly, they

differ in the fact that instead of applying (B.2) in the last step, one needs to apply (B.3),

(B.4), and (B.5) respectively. Note that it is more or less imaginable to combine all these

four cases using a kind meta notation just as in (B.1), but only at the cost of an even more

crippled clarity of the above derivation.

Secondly, we examine the case where in the last derivation step we are applying a produc-

tion that does have a terminal-only right-hand side (so m = 1). We start with the subcase

1 < i < n − 1 and n > 2. This time, we arrive at the following derivations of length l + 1:

G : S ⇒l v1A1v2 . . . vn−1An−1vn ⇒1 v1A1v2 . . . viw1vi+1 . . . vn−1An−1vn,

G′ : [S] ⇒l v′[A1 . . . An−1] ⇒1 v′ap′ [A1 . . . Ai−1Ai+1 . . . An−1].

Note that (8.3) and (8.4) also hold for these derivations.

To prove:

h′(v′ap′) = h(v1) + fold(h(v2)) + · · · + fold(h(vi−1)) + fold(h(viw1vi+1)) +

fold(h(vi+2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L).



70 Power of interpretation

Proof (derivation is almost the same as the previous one):

h′(v′ap′)
(7.1)
=

h′(v′) · h′(ap′)
(8.3)
=

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) · h′(ap′) =(definition of h′(ap′ ))

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·







U#in(A1)+#out(A1) + · · · + U#in(Ai−1)+#out(Ai−1) +

backfold(h(w1)) +

U#in(Ai+1)+#out(Ai+1) + · · · + U#in(An−1)+#out(An−1) + U#out(L)








(4.9)
=

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·







U#in(A1)+#out(A1)+···+#in(Ai−1)+#out(Ai−1) +

backfold(h(w1)) +

U#in(Ai+1)+#out(Ai+1)+···+#in(An−1)+#out(An−1) + U#out(L)








(8.4)
=

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·










U#out(h(v1))+#in(h(v2))+#out(h(v2))+···+#in(h(vi−1))+#out(h(vi−1))+#in(h(vi)) +

backfold(h(w1)) +

U#out(h(ai+1))+#in(h(vi+2))+#out(h(vi+2))+···+#in(h(vn−1))+#out(h(vn−1))+#in(h(vn)) +

U#out(L)











(4.9)
=

(h(v1) + fold(h(v2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)) ·










U#out(h(v1)) + U#in(h(v2))+#out(h(v2)) + · · · + U#in(h(vi−1))+#out(h(vi−1)) +

U#in(h(vi)) + backfold(h(w1)) + U#out(h(ai+1)) +

U#in(h(vi+2))+#out(h(vi+2)) + · · · + U#in(h(vn−1))+#out(h(vn−1)) + U#in(h(vn)) +

U#out(L)











(B.7)
=








h(v1) + fold(h(v2)) + · · · + fold(h(vi−1)) +

fold(h(viw1vi+1)) +

fold(h(vi+2)) + · · · + fold(h(vn−1)) + flip(h(vn)) + U#out(L)










Int(RLIN) = Int(DB) 71

The equivalents for the subcases (i = 1 and n > 2), (i = n − 1 and n > 2), and (i = 1 and

n = 2) are not written out in full here, as they are very similar. Most importantly, they

differ in the fact that instead of applying (B.7) in the last step, one needs to apply (B.8),

(B.9), and (B.10) respectively.

The similar proof applies for the direction from right to left, where we use the same pairs

of derivations for each value of j. This completes the overall proof of the invariant.

Now for any H ∈ IntI(L):5

∃v,w,u∈T ∗ G : S ⇒∗ vAw ⇒1 vuw, such that h(vuw) = H,

where A ∈ N , and production p : A → u applied in the last step. Choose such a v, w, u ∈

T ∗. As implied by the invariant:

∃v′∈T ′∗ G′ : [S] ⇒∗ v′[A] and h(v) + flip(h(w)) + U#out(L) = h′(v′).

Choose such a v′ ∈ T ′∗. Define p′ to be q(p, [A], 1]), the production in P ′ corresponding to

the application of p in the context of [A]. Thus, p′ : [A] → ap′ . Then, G′ : [S] ⇒∗ v′[A] ⇒1

v′ap′ , and:

h′(v′ap′)
(7.1)
=

h′(v′) · h′(ap′) =(invariant)

(h(v) + flip(h(w)) + U#out(L)) · h′(ap′) =(definition of h′(ap′ ))

(h(v) + flip(h(w)) + U#out(L)) · (backfold(h(u)) + U#out(L))
(6.33)
=

backfold(h(v)h(u)h(w)) + U#out(L)
(7.2)
=

backfold(h(vuw)) + U#out(L) =(as by definition h(vuw)=H)

backfold(H) + U#out(L).

And therefore also:

G′ : D ⇒1 ap0 [S] ⇒∗ ap0v
′[A] ⇒1 ap0v

′ap′ ,

and:

h′(ap0v
′ap′)

(7.1)
=

h′(ap0) · h′(v′ap′) =(as by definition h′(ap0 )=U#in(L)+fold(U#out(L)))

(U#in(L) + fold(U#out(L))) · h′(v′ap′) =(as proven above)

5N.B.: this part is almost identical to the last part of Section 8.1.



72 Power of interpretation

(U#in(L) + fold(U#out(L))) · (backfold(H) + U#out(L))
(6.34)
=

U#in(L) · H · U#out(L) · U#out(L) =(unity)

H.

Which proves that H ∈ IntI′(L′), so IntI(L) ⊆ IntI′(L′). The proof in the other direction,

IntI(L) ⊇ IntI′(L′), works in the same way. This completes the proof of our claim that

IntI(L) = IntI′(L′), and thus also completes the overall proof of Int(RLIN) = Int(DB).

8.3 Int(STR(Int(K))) = Int(K)

Given a class K of string languages, it turns out that under the remarkably weak conditions

that:

• K is closed under λ-free finite substitution, and,

• K is closed under intersection with a regular language,

we have that:

Int(STR(Int(K))) = Int(K). (8.5)

Both RLIN and CF, and most other classes not deliberately constructed to violate these

conditions, can be substituted for K. We will not give a complete formal proof, but only

the construction for a graph language L in the one side of (8.5), given L is contained in

the other side.

Proof. The direction Int(STR(Int(K))) ⊇ Int(K) is easy, as by (7.9) gr(K) ⊆

Int(K), so therefore also STR(gr(K)) ⊆ STR(Int(K)), and by (3.6) K ⊆ STR(Int(K)),

from which the result Int(K) ⊆ Int(STR(Int(K))) immediately follows.

The other direction, Int(STR(Int(K))) ⊆ Int(K), involves a lot of hard work. Given

a hypergraph language L ∈ Int(STR(Int(K))), we construct6 an L′ ∈ Lτ (K), and an

interpreter I ′ = (Σ′, ∆′, h′) for L′, such that IntI′(L′) = L.

Construction:

There exist alphabets Σ1, Σ2, languages L0 ⊆ Σ∗1, L1 ⊆ Σ∗2, with L0 ∈ K, and interpreters

I1 = (Σ1, ∆1, h1), and I2 = (Σ2, ∆2, h2) for L0 and L1 respectively, such that IntI1(L0) =

6Be warned: the construction we give is flooded with technical detail to such an extend, that it borders

on the totally incomprehensible. However, it should be possible to grasp the essence of its inner workings

by studying the explanation that follows the construction.



Int(STR(Int(K))) = Int(K) 73

gr(L1), and IntI2(L1) = L (note that necessarily Σ2 = ∆1, save the types and ranks).

Assume (without loss of generality, as K is closed under λ-free finite substitution) that I1

is in ENF. Define µ to be the maximum input or output type of a h2(a) for all a ∈ Σ2:

µ = max {#in(h2(a)),#out(h2(a)) | a ∈ Σ2 } .

L′ is formed by applying a λ-free finite substitution to L0, and then intersecting the result

with a regular language:

L′ = σ(L0) ∩ LT .

Here σ is a mapping from Σ1 to finite subsets of Σ′:

σ : Σ1 → P(Σ′),

and LT ⊆ Σ′∗ is a regular language. Σ′ is derived from Σ1:

Σ′ =
⋃

a∈Σ1

Σa.

Here, for every symbol (a, m → n) ∈ Σ1, Σa is defined as follows:

Σa =






〈a, 〈i1, . . . , im〉, 〈o1, . . . , on〉〉

∣
∣
∣
∣
∣
∣

i1, . . . , im, o1, . . . , on ∈ [µ] ∧

P(〈a, 〈i1, . . . , im〉, 〈o1, . . . , on〉〉)






,

where for ā = 〈a, 〈i1, . . . , im〉, 〈o1, . . . , on〉〉, and h1(a) = (V, E,nod, lab, in,out), P(ā)

denotes the following condition (note that because IntI1(L0) only contains ordinary graphs,



74 Power of interpretation

h1(a) is necessarily also an ordinary graph):
























∀ e∈E

nod(e)=(v1,v2)

lab(e)=d
























(

∀1≤j≤m (v1 = in(j) =⇒ #inΣ2(d) = ij)
)

∧
(

∀1≤j≤n (v1 = out(j) =⇒ #inΣ2(d) = oj)
)

∧
(

∀1≤j≤m (v2 = in(j) =⇒ #outΣ2(d) = ij)
)

∧
(

∀1≤j≤n (v2 = out(j) =⇒ #outΣ2(d) = oj)
)















































∧
















(

∀1≤j,j′≤m (in(j) = in(j′) =⇒ ij = ij′)
)

∧
(

∀1≤j,j′≤n (out(j) = out(j′) =⇒ oj = oj′)
)

∧
(

∀1≤j≤m,1≤j′≤n (in(j) = out(j′) =⇒ ij = oj′)
)
















The typing on Σ′ is defined as follows. For all (ā, m → n) ∈ Σ′, where ā = 〈a, 〈i1, . . . , im〉,

〈o1, . . . , on〉〉:

#inΣ′(ā) =
m∑

j=1

ij,

#outΣ′(ā) =
n∑

j=1

oj.

Now for all a ∈ Σ1 the substitution σ is defined as follows:

σ(a) = Σa,

and the language LT as follows:

LT =

{

ā1 . . . āk

∣
∣
∣
∣
∣

k ≥ 0, ā1 . . . āk ∈ Σ′∗,∀1≤i<k match(āi, āi+1) ∧

#inΣ′(ā1) = #in(L) ∧ #outΣ′(āk) = #out(L)

}

∪ {(λ,#in(L) → #in(L))}



Int(STR(Int(K))) = Int(K) 75

where match is defined as follows. For all ā, b̄ ∈ Σ′,

ā = 〈a, 〈i1, . . . , im〉, 〈o1, . . . , on〉〉,

b̄ = 〈b, 〈i′1, . . . , i
′
m′〉, 〈o′1, . . . , o

′
n′〉〉,

match(ā, b̄) ⇐⇒ 〈o1, . . . , on〉 = 〈i′1, . . . , i
′
m′〉.

Note that match(ā, b̄) implies that #out(ā) = #in(b̄), but not the other way around!

This condition, together with the conditions #inΣ′(ā1) = #in(L) and #outΣ′(āk) =

#out(L), guarantees that LT , and therefore L′ also, is a typed language with respect to

Σ′. Finally, we now have fully and uniquely defined L′:

L′ = σ(L0) ∩ LT .

In order to completely define I ′, we still have to specify h′. This interpretation function h′

we define as follows7. For all (ā, m → n) ∈ Σ′:

ā = 〈a, 〈i1, . . . , im〉, 〈o1, . . . , on〉〉,

and

h1(a) = (V, E,nod, lab, in,out),

we define:

h′(ā) = (V ′, E ′,nod′, lab′, in′,out′).

Here we distinguish two cases:

• The hypergraph h1(a) contains no edges; E = ∅,

• The hypergraph h1(a) contains exactly one edge; E = {e}.

Other cases do not occur, as I1 is in ENF.

Case 1, E = ∅.

V ′ = { 〈in(j), k〉 | 1 ≤ j ≤ m and 1 ≤ k ≤ ij } ∪

{ 〈out(j), k〉 | 1 ≤ j ≤ n and 1 ≤ k ≤ oj } ,

E ′ = nod′ = lab′ = ∅,

in′ =

(

〈in[1], 1〉, . . . , 〈in[1], i1〉,
...

. . .
...

〈in[m], 1〉, . . . , 〈in[m], im〉
)

,

7Keep in mind that ā ∈ Σ′ implies that the condition P(ā) holds.



76 Power of interpretation

out′ =

(

〈out[1], 1〉, . . . , 〈out[1], o1〉,
...

. . .
...

〈out[n], 1〉, . . . , 〈out[m], on〉
)

.

Case 2, E = {e},nod(e) = (v1, v2), lab(e) = d. Note that necessarily v1 6= v2, because

otherwise h1(a) would contain a loop, and therefore some H ∈ IntI1(L0) also. As this is a

language of string graphs, this cannot happen (see also Section 4.2).

V ′ = { 〈in(j), k〉 | 1 ≤ j ≤ m and 1 ≤ k ≤ ij and in(j) /∈ {v1, v2} } ∪

{ 〈out(j), k〉 | 1 ≤ j ≤ n and 1 ≤ k ≤ oj and out(j) /∈ {v1, v2} } ∪

Vh2(d),

E ′ = Eh2(d),

nod′ = nodh2(d),

lab′ = labh2(d),

in′ = in′1 . . . in′m, where:

in′k =







(〈in(k), 1〉, . . . , 〈in(k), ik〉) if in(k) /∈ {v1, v2},

inh2(d) if in(k) = v1,

outh2(d) if in(k) = v2.

out′ = out′1 . . . out′n, where:

out′k =







(〈out(k), 1〉, . . . , 〈out(k), ok〉) if out(k) /∈ {v1, v2},

inh2(d) if out(k) = v1,

outh2(d) if out(k) = v2.

This fully completes the construction of I ′.

We have now constructed an L′ and an interpreter I ′ for L′, for which we claim that

IntI′(L′) = L. However, we will not give a formal proof of this claim, but instead make it

plausible by explaining how the construction works.

The construction used in this proof is based on the intuition that (8.5):

Int(STR(Int(K))) = Int(K)

holds because we can always “move” an outermost interpretation I2 on the left-hand side

into its corresponding innermost one I1, so that we get an interpretation I ′ that performs



Int(STR(Int(K))) = Int(K) 77

“I2 ◦ I1”. This is done by applying the interpretation function h2 of I2 to the hypergraphs

that occur in the definition of h1. In that process, every edge e that occurs in h1 is replaced

by the hypergraph h2(lab(e)). In order to do that, we need to split up the node nod(e, 1)

into #in(h2(lab(e))) new ones, and the node nod(e, 2) into #out(h2(lab(e))) new ones,

so that the replacing hypergraph h2(lab(e)) “fits”.

In that way, all nodes in h1 get split up properly, except for those that are not incident

with an edge. These nodes also need to split up, namely in p new ones, where 0 ≤ p ≤ µ.

However, we do not directly know p. Therefore, using σ, we generate all possible “split-

up’s”. Then to remove the ones that are incorrect, we intersect σ(L0) with the “type

checking” language LT . This LT contains all sequences of split-up’s that match up. To be

more precise, for an (a, m → n) ∈ Σ1, the typed set Σa of all its split-up’s consists of all

symbols ā = 〈a, 〈i1, . . . , im〉, 〈o1, . . . , on〉〉, where the i’s are used to indicate that the pth

input node of h1(a) should be split up into ip new nodes, and the qth output node into jq

new nodes.

So, L′ = σ(L0) ∩ LT consists of all words w ∈ L0, together with the intended split-up

numbers of their symbols, which numbers are meaningful. Then h′(ā) is defined as h1(a)

properly split up, with the eventual edge e replaced by h2(lab(e)). Note that as h1 is in

Edge Normal Form, there can be at most one edge. The h′ thus obtained, intuitively, is

“h2 applied to h1”. Finally, the closure conditions on K for (8.5) arise from the operations

used to define L′, i.e., to guarantee that L′ ∈ K.

We would very much have liked to give a tangible example of all this. However, the

tendency of the construction to lead to a combinatorial explosion seems to defy any attempt

at such an example. The only examples that are manageable are the highly trivial ones,

where L consists of string graphs only. To give an indication of the exponential growth of

the construction, if we would use the L and I from Example 1 in Section 7.3 (which are

quite simple) for L0 and I1, and about the simplest nontrivial interpretation I2 (where, say,

µ is only 2), Σ′ already contains 747 symbols, and σ(L0) and LT are apparently impossible

to write down in a way that is essentially simpler than just giving their definition. But

things are worse than that: I1 is required to be in Edge Normal Form. This gives rise to

even more combinatorial headaches!

Conclusion: there seems to be no way to give a proper example, one that is neither

trivial, nor monstrous. We do consider this, together with absence of a formal proof, major

shortcomings of our construction. We would very much welcome a better one.

For what it is worth, we are convinced that the conjecture (8.5) is true, because the

construction and the intuition leading to it are quite convincing (to us). Nonetheless, the

conjecture should be considered a conjecture, and nothing more. At best, its status may

be described as an “interesting and promising direction for further research”.



78 Power of interpretation

8.4 About STR(Int(RLIN))

By the results of the previous section we can now make some strong statements on the

class STR(Int(RLIN)). To start with:

DB  STR(Int(RLIN)). (8.6)

Proof. Firstly, we prove that DB ⊆ STR(Int(RLIN)). By (3.6), DB = STR(gr(DB)),

by (7.9), gr(DB) ⊆ Int(DB), and therefore also STR(gr(DB)) ⊆ STR(Int(DB)), and

finally, by Section 8.2, Int(DB) = Int(RLIN), and therefore also STR(Int(DB)) =

STR(Int(RLIN)). Merging these equations, we get:

DB = STR(gr(DB)) ⊆ STR(Int(DB)) = STR(Int(RLIN)).

So, DB ⊆ STR(Int(RLIN)). Now, secondly, we have to find a string language L such that

L /∈ DB, but still L ∈ STR(Int(RLIN)). We take: L = { anbncn | n ∈ N }. This L, as is

well known from formal language theory, is not in DB (not even in CF). And as shown in

Section 7.3, L ∈ STR(Int(RLIN)). This completes the proof of (8.6).

The above result enables us to extend our sequence of properly included classes of

string-languages:

RLIN  LIN  DB  STR(Int(RLIN)).

Furthermore, in the previous three sections, we proved that these classes are all the same

under interpretation.

Now we have proven that RLIN and STR(Int(RLIN)) are the same under interpreta-

tion, from this, and the definition of Int(K), it follows that for any class of languages K

such that RLIN ⊆ K ⊆ STR(Int(RLIN)) it must be the case that Int(RLIN) = Int(K):

RLIN ⊆ K ⊆ STR(Int(RLIN)) =⇒ Int(RLIN) = Int(K). (8.7)

Proof: because RLIN ⊆ K, by (8.1), we have Int(RLIN) ⊆ Int(K). And because K ⊆

STR(Int(RLIN), we also have Int(K) ⊆ STR(Int(RLIN)). Now from Int(RLIN) =

STR(Int(RLIN)) it directly follows that Int(RLIN) = Int(K).

At this point, one might be curious whether there exists a class K still larger than

STR(Int(RLIN)), such that Int(K) = Int(RLIN). The answer is: no. Proof by reductio

ad absurdum: given a class K ! STR(Int(RLIN), suppose Int(K) = Int(RLIN). Then of

course also STR(Int(K)) = STR(Int(RLIN)). Now because gr(K) ⊆ Int(K) (by (7.9)),

STR(gr(K)) ⊆ STR(Int(RLIN)). But then, by (3.6), K ⊆ STR(Int(RLIN))), and we

have a contradiction.



The power of interpretation theorems 79

Combining the above results, for any class K of string languages, we have:

Int(K) ⊆ Int(RLIN) ⇐⇒ K ⊆ STR(Int(RLIN)). (8.8)

The proof is just a recapitulation of earlier proofs in this section. Firstly, the direction =⇒

holds because, as proved in Section 8.3, Int(RLIN) = Int(STR(Int(RLIN))), and hence if

Int(K) ⊆ Int(RLIN), then also K = STR(gr(K)) ⊆ STR(Int(K)) ⊆ STR(Int(RLIN)).

Secondly, the direction ⇐= holds because, if K ⊆ STR(Int(RLIN), then also Int(K) ⊆

Int(STR(Int(RLIN))) = Int(RLIN).

Finally, the class STR(Int(RLIN)) was found to be equal to the class OUT(2DGSM)

by8 Engelfriet and Heyker in 1991.

About this class OUT(2DGSM), the class of all output languages of two-way determin-

istic generalized sequential machines, quite a lot is known; for example, it is a substitution

closed full AFL. For further properties, see [ERS80] and its references.

8.5 The power of interpretation theorems

From the results we have now obtained, we will derive two theorems on the power of

interpretation. Given two classes K and K ′, they give necessary and sufficient conditions

for:

• Int(K) ⊆ Int(K ′), and,

• Int(K) = Int(K ′).

These conditions will be in terms of ordinary string languages only.

Power of Interpretation Theorem I:

For all classes K ′ that are closed under λ-free finite substitution, and under intersection

with a regular language, we have that for any class K:

Int(K) ⊆ Int(K ′) ⇐⇒ K ⊆ STR(Int(K ′)). (8.9)

Proof. As in the proof of (8.8) we did not specifically use properties of RLIN, other

than that it is closed under λ-free finite substitution, and under intersection with a regular

language, we can extend it from RLIN to any class K ′ that satisfies these closure properties.

8See [EH91, page 356], where STR(Int(RLIN)) is called STR(LIN-CFHG). However, beware: their

definition of STR is not identical to ours. See also Section 11.4, where the relation between Int(RLIN)

and LIN-CFHG is discussed (“essentially equal”).



80 Power of interpretation

Power of Interpretation Theorem II:

For all classes K and K ′, such that both are closed under λ-free finite substitution, and

under intersection with a regular language, we have:

Int(K) = Int(K ′) ⇐⇒ STR(Int(K)) = STR(Int(K ′)). (8.10)

Proof. The direction =⇒ is trivial. The direction ⇐= is as follows: if STR(Int(K)) =

STR(Int(K ′)), then obviously also Int(STR(Int(K))) = Int(STR(Int(K ′))). By Sec-

tion 8.3, Int(STR(Int(K))) = Int(K), and Int(STR(Int(K ′))) = Int(K ′), from which

the result then immediately follows.

These two theorem are have clear implications. The second one, intuitively, says that for

two classes of string languages K and K ′, if we want to know whether Int(K) and Int(K ′)

are equal, we just have to check some simple closure properties, and prove the equality for

the string-graph languages in Int(K) and Int(K ′) only.

The first one gives, given a class K ′ that satisfies some closure properties, the largest

class K such that Int(K) is still contained in Int(K ′).

8.6 Conclusions

The results from this chapter give strong indications on the “power” of interpretation. The

fact that Int(RLIN) is equal to Int(DB), although there is quite a gap between RLIN and

DB, tells us that a lot of complexity can be moved out of the interpreted language, into the

interpreter. For example: we can choose a complex language L ∈ DB and any interpreter

I for L, and then construct a simple language L′ ∈ RLIN and an interpreter I ′ for L′ that

generates the same hypergraph language: IntI(L) = IntI′(L′). Somehow the complexity

has “fled” out of L, into I ′!

However, there are limits to the amount of complexity that can be moved in this way.

As we will prove in Section 11.5, Int(CF) is a proper superset of Int(DB). Confusingly

enough, there are languages that are not even context-free, and still under interpretation do

not yield stronger results than RLIN under interpretation (see section 8.4). As an example

of this, take L = { anbncn | n ∈ N }. As shown in Section 7.3, L ∈ STR(Int(RLIN)). And

by Section 8.3: Int(STR(Int(RLIN))) = Int(RLIN).

This is strange! On the one hand, the class STR(Int(RLIN)) contains a wealth of

complex languages, amongst which all of DB, and even non context-free languages. On the

other hand, all the complexity of Int(STR(Int(RLIN))) can be moved into an interpreter



Conclusions 81

acting on RLIN. Apparently, the complexity of STR(Int(RLIN)) is of a “specific kind”

which can be “handled” by interpretation on RLIN. However, as noted, the complexity of

CF is not of that specific kind, and it can not be handled by interpretation on RLIN. As

a side result of these considerations, by the way, one can easily see that STR(Int(RLIN))

and CF are incomparable, i.e. neither is a subset of the other.

For the case of interpretation on RLIN, we have proven that the kind of complexity inter-

pretation can “cope with”, is exactly the kind of complexity of the class STR(Int(RLIN)).

And in general, for a class K that is closed under λ-free finite substitution, and under inter-

section with a regular language, interpretation on K can exactly cope with the complexity

generated by STR(Int(K)), and nothing more (Power of Interpretation Theorem I).

Furthermore, the Power of Interpretation Theorem II is of great help to prove two

classes equal under interpretation. If for some classes K and K ′ we want to prove that

Int(K) = Int(K ′), essentially all we have to do is to prove it for the string graphs only.

Still a question remains: given a class K, what is the nature of the class STR(Int(K))?

What does it look like? What is its relation with other known classes? As for RLIN, we

know that is leads to OUT(2DGSM). For a similar problem (but beyond the reach of the

formalism of interpretation), Engelfriet and Heyker [EH91, page 355], arrived at the class

OUT(DTWT), all output languages of deterministic tree-walking transducers. Hence, it

seems reasonable to assume STR(Int(K)), for different K, will be equal to other known

classes, and possibly even interesting unknown classes.

Maybe future research will give a more profound insight into the exact nature of

STR(Int(K)), or in other words, into the nature of the complexity interpretation can

cope with. In that way, interpretation might serve as a vehicle to obtain further knowledge

in the field of traditional formal language theory; by taking a detour through the realm of

graph languages, we have found complexity measures on string languages.





A mathematician is a machine for

converting coffee into theorems.

— A. N. Onymous 9
Closure properties of Int(K)

In this chapter we will examine the closure properties of Int(K) under several operations.

We will give sufficient conditions for closure in terms of closure properties of K. Sometimes

we can give several, mutually independent, sufficient conditions.

9.1 Closure under sequential composition

Sufficient condition: K closed under concatenation and isomorphism.

Proof. Given two hypergraph languages L1, L2 ∈ Int(K) choose two typed languages

L1, L2 ∈ Lτ (K) over disjoint alphabets (the existence of which is guaranteed by the defini-

tion of Int, the isomorphic copies theorem, and the closure of K under isomorphism), and

two interpreters I1, I2 for L1 and L2 such that IntI1(L1) = L1 and IntI2(L2) = L2.

As K is closed under concatenation we know that L3 = L1 · L2 is in K. Taking

I3 = I1 ∪ I2 (performing the union pairwise on all elements of the 3-tuple) as interpreter

for L3 we get IntI3(L3) = L1 · L2. This is proved as follows:

IntI3(L3)
(7.3)
=

{ h3(w) | w ∈ L3 } =(definition of L3)

{ h3(w1 · w2) | w1 ∈ L1, w2 ∈ L2 }
(7.1)
=

{ h3(w1) · h3(w2) | w1 ∈ L1, w2 ∈ L2 } =(definition of h3)

83



84 Closure properties of Int(K)

{ h1(w1) · h2(w2) | w1 ∈ L1, w2 ∈ L2 }
(4.3)
=

{ h1(w) | w ∈ L1 } · { h2(w) | w ∈ L2 }
(7.3)
=

IntI1(L1) · IntI2(L2) =(definition of L1,L2)

L1 · L2.

Therefore, Int(K) is closed under sequential composition. Proving Int(K) closed under

union and Kleene closure works in a similar way. Be warned however: the following two

sections are boringly alike this one!

9.2 Closure under union

Sufficient condition: K closed under union and isomorphism.

Proof. Given two hypergraph languages L1, L2 ∈ Int(K) choose two typed languages

L1, L2 ∈ Lτ (K) over disjoint alphabets (the existence of which is guaranteed by the defini-

tion of Int, the isomorphic copies theorem, and the closure under isomorphism), and two

interpreters I1, I2 for L1 and L2 such that IntI1(L1) = L1 and IntI2(L2) = L2.

As K is closed under union we know that L3 = L1 ∪ L2 is in K. Taking I3 = I1 ∪ I2

(performing the union pairwise on all elements of the 3-tuple) as interpreter for L3 we get

IntI3(L3) = L1 ∪ L2. This is proved as follows:

IntI3(L3)
(7.3)
=

{ h3(w) | w ∈ L3 } =(definition of L3)

{ h3(w) | w ∈ L1 ∪ L2 } =(set theory)

{ h3(w) | w ∈ L1 } ∪ { h3(w) | w ∈ L2 } =(definition of h3)

{ h1(w) | w ∈ L1 } ∪ { h2(w) | w ∈ L2 }
(7.3)
=

IntI1(L1) ∪ IntI2(L2) =(definition of L1,L2)

L1 ∪ L2.

Therefore, Int(K) is closed under union.

9.3 Closure under Kleene closure

Sufficient condition: K closed under Kleene closure.

Proof. Given a hypergraph language L ∈ Int(K) choose a typed language L ∈ Lτ (K) and

an interpreter I for L, such that IntI(L) = L.



Closure under +{Un} and {Un}+ 85

As K is closed under Kleene closure we know that L′ = L∗ is in K. We now have

IntI(L
′) = L

∗. This is proved as follows:

IntI(L
′)

(7.3)
=

{ h(w) | w ∈ L′ } =(definition of L′)

{ h(w) | w ∈ L∗ }
(7.2)
=

{ h(w) | w ∈ L }∗ =(definition of L)

L
∗.

Therefore, Int(K) is closed under Kleene closure.

9.4 Closure under +{Un} and {Un}+

Sufficient condition: TRUE.

Proof. Given a hypergraph language L ∈ Int(K) and an n ∈ N, choose an L ∈ Lτ (K) and

an I = (Σ, ∆, h), an interpreter for L, such that IntI(L) = L. Define I ′ = (Σ′, ∆′, h′) =

(Σ, ∆, h + Un). We now have: IntI′(L) = L + {Un}. This can be proved as follows:

IntI′(L)
(7.3)
=

{ h′(w) | w ∈ L } =(rewriting w as symbols)

{ h′(a1 . . . am) | a1 . . . am ∈ L }
(7.2)
=

{ h′(a1) . . . h′(am) | a1 . . . am ∈ L } =(definition of h′)

{ (h(a1) + Un) . . . (h(am) + Un) | a1 . . . am ∈ L }
(4.13)
=

{ (h(a1) . . . h(am)) + (Un . . . Un) | a1 . . . am ∈ L } =(unity)

{ (h(a1) . . . h(am)) + Un | a1 . . . am ∈ L }
(7.2)
=

{ h(a1 . . . am) + Un | a1 . . . am ∈ L } =(rewriting symbols as w)

{ h(w) + Un | w ∈ L } =(definition of +{Un})

{ h(w) | w ∈ L } + {Un}
(7.3)
=

IntI(L) + {Un} =(definition of L)

L + {Un}.

Therefore, Int(K) is closed under +{Un}. Similarly, we can prove Int(K) to be closed

under {Un}+.



86 Closure properties of Int(K)

9.5 Closure under parallel composition

Sufficient condition: Int(K) closed under sequential composition. So in terms of a

sufficient condition on K: K closed under concatenation and isomorphism.

Proof. Let L1, L2 ∈ Int(K) be hypergraph languages. We can now derive:

(L1 + {U#in(L2)}) · ({U#out(L1)} + L2)
(4.10)
=

L1 · {U#out(L1)} + {U#in(L2)} · L2 =(unity)

L1 + L2.

Because Int(K) is closed under all operations involved (·, +{Un}, {Un}+, see sections 9.1

and 9.4) this proves that L1+L2 ∈ Int(K), so Int(K) is closed under parallel composition.

9.6 Closure under fold and backfold

Sufficient condition: fold({Un}) ∈ Int(K) (backfold({Un}) ∈ Int(K) for closure under

backfold) and Int(K) closed under · and +. So in terms of a sufficient condition on K:

{a} ∈ K for some symbol a, and K is closed under concatenation and isomorphism.

Proof. Let L ∈ Int(K) be a hypergraph language. We can now derive:

fold({U#in(L)}) · ({U#in(L)} + L)
(6.32)
=

fold(flip({U#in(L)}) · {U#in(L)} · L)
(6.25)
=

fold({U#in(L)} · {U#in(L)} · L) =(unity)

fold(L).

Because Int(K) is closed under all operations involved (·, +), and because {U#in(L)},

fold({U#in(L)}) ∈ Int(K) as we can obtain it by interpreting {a} ∈ K in the appropriate

way, this proves that fold(L) ∈ Int(K), so Int(K) is closed under folding. Proving Int(K)

closed under backfolding works in the same manner, using (6.33) instead of (6.32).

9.7 Closure under flip

Sufficient condition: {Un} ∈ Int(K) and Int(K) closed under ·, +, fold, and backfold.

So in terms of a sufficient condition on K: {a} ∈ K for some symbol a, and K is closed

under concatenation and isomorphism.



Closure under flip 87

Proof. Let L ∈ Int(K) be a hypergraph language. We can now derive:

(fold(L) + {U#out(L)}) · ({U#in(L)} + backfold({U#out(L)}))
(6.25)
=

(fold(L) + flip({U#out(L)})) · (flip({U#in(L)}) + backfold({U#out(L)}))
(6.35)
=

flip({U#in(L)} · L · {U#out(L)} · {U#out(L)}) =(unity)

flip(L).

Because Int(K) is closed under all operations involved (·, +, fold, backfold), and because

{U#out(L)}, {U#in(L)} ∈ Int(K) as we can obtain them by interpreting {a} ∈ K in the

appropriate way, this proves that flip(L) ∈ Int(K), so Int(K) is closed under flipping.

However, there is also another, very natural, sufficient condition for closure under flipping:

Sufficient condition: K is closed under reversal.

Proof. Given an L ∈ Int(K), choose an L ∈ Lτ (K) and an I = (Σ, ∆, h), an interpreter

for L, such that IntI(L) = L. As we know that K is closed under reversal, LR ∈ K. Define

I ′ = (Σ′, ∆′, h′) = (Σ, ∆,flip ◦ h). We now have: IntI′(LR) = flip(L). This can be proved

as follows:

IntI′(LR)
(7.3)
=

{

h′(w)
∣
∣
∣w ∈ LR

}

=(definition of reversal)

{

h′(wR) | w ∈ L
}

=(rewriting w as symbols)

{ h′(an . . . a1) | a1 . . . an ∈ L }
(7.2)
=

{ h′(an) . . . h′(a1) | a1 . . . an ∈ L } =(definition of h′)

{flip(h(an)) . . .flip(h(a1)) | a1 . . . an ∈ L }
(6.23)
=

{flip(h(a1) . . . h(an)) | a1 . . . an ∈ L }
(7.2)
=

{flip(h(a1 . . . an)) | a1 . . . an ∈ L } =(rewriting symbols as w)

{flip(h(w)) | w ∈ L } =(set theory)

flip ({ h(w) | w ∈ L })
(7.3)
=

flip (IntI(L)) =(definition of L)

flip(L).

Therefore, Int(K) is closed under flipping.



88 Closure properties of Int(K)

9.8 Closure under split

Sufficient condition: {Un} ∈ Int(K) and Int(K) closed under fold, backfold, · and +.

So in terms of a sufficient condition on K: {a} ∈ K for some symbol a, and K is closed

under concatenation and isomorphism.

Proof. Let L ∈ Int(K) be a hypergraph language, and p, q ∈ N arbitrary integers such

that p + q = #in(L) + #out(L). We can now derive:

splitp,q(L)
(6.28)
= ({Up} + fold({Uq}) · (backfold(L) + {Uq}).

Because Int(K) is closed under all operations involved (fold, backfold, ·, +), and because

{Up}, {Uq} ∈ K as we can obtain them by interpreting {a} ∈ K in the appropriate way,

this proves that splitp,q(L) ∈ Int(K), so Int(K) is closed under splitp,q. As p and q were

arbitrarily chosen, and by (6.29), this means that Int(K) is also closed under split (in

general, without specified p and q).

9.9 Closure under edge relabeling

Sufficient condition: TRUE.

Proof. Let L ∈ Int(K) be a hypergraph language over a ranked alphabet ∆, ∆′ a ranked

alphabet, and f : ∆ → ∆′ a rank preserving function (∀a∈∆ rank(f(a)) = rank(a)).

Extend f in the obvious way to operate on hypergraphs, such that it returns the same

hypergraph, only with the edges relabeled. Now choose a language L ∈ Lτ (K) and I =

(Σ, ∆, h) an interpreter for L such that IntI(L) = L. If we now choose I ′ = (Σ, ∆′, f ◦

h), then clearly IntI′(L) is the hypergraph language that results from applying the edge

relabeling f to (the edge labels in) L. Therefore, Int(K) is closed under the relabeling of

edges.

9.10 Conclusions

Summarizing the results from this chapter, we can draw the following table to express

the sufficient conditions for closure of Int(K). Each row indicates for a certain operation

which closure conditions on K are sufficient to guarantee closure on Int(K) under that

operation. Needed conditions are marked by a bullet (•), “edge relab.” stands for edge

relabeling, and “isomorph” for isomorphism.



Conclusions 89

· ∪ ∗ isomorph {a} ∈ K reversal

· • •

+ • •

∪ • •
∗ •

+{Un}

{Un}+

fold • • •

backfold • • •

splitp,q • • •

flip • • •

flip •

edge relab.

Finally, note that RLIN and CF satisfy all mentioned closure conditions. Therefore, both

Int(RLIN) and Int(CF) are closed under all mentioned operations.





If you cannot convince them, confuse them.

— Harry S. Truman 10
Another characterization

It turns out that there is another beautiful way to characterize the class of hypergraph

languages Int(RLIN), without the concept of “interpreting” at all! This characterization

is as follows:

Int(RLIN) is the smallest class of hypergraph languages that is closed

under concatenation, parallel composition, union, and Kleene closure, and

that contains the singleton class derived from the full base set.

Before we will be able to prove this characterization, we will first prove that some other

characterizations that look like it also define the class Int(RLIN).

10.1 Using HGR

To begin with, we characterize Int(RLIN) as the smallest class of hypergraph languages

that is closed under concatenation, union, and Kleene closure, and that contains all single-

ton hypergraph languages. To prove that this characterization indeed defines the class

Int(RLIN), we need to prove three things. Firstly, by Section 9.10, it is clear that

Int(RLIN) is indeed closed under concatenation, union, and Kleene closure. Secondly,

it is trivial that Int(RLIN) contains all singleton hypergraph languages, as Int({{a}})

consists of exactly all singleton hypergraph languages (see Example 3 of Section 7.3), and

clearly {a} ∈ RLIN. Therefore by (8.1), Int({{a}}) ⊆ Int(RLIN). The third (and last)

part is the hardest: Int(RLIN) is the smallest class that is closed under concatenation,

91



92 Another characterization

Kleene closure, and union, and that contains all singleton hypergraph languages. In order

to prove this, we have to show that every hypergraph language L ∈ Int(RLIN) over some

alphabet ∆ can be denoted by a finite expression over Sing(HGR(∆)), ·, ∗, and ∪ (also

called a regular expression).

Proof. Choose such an L ∈ Int(RLIN). Let L be a typed right-linear language over

some alphabet Σ, and I = (Σ, ∆, h) an interpreter for L, such that IntI(L) = L. From

formal language theory, it is a well known fact1 that L can be expressed by a regular

expression over ·, ∗, ∪, and Σ. So, let r be a regular (string) expression that denotes L.

Now let r′ be the regular (graph) expression derived from r by replacing every occurrence

of {a} by {h(a)}, for all a ∈ Σ. As we know that for all string languages L′ and L′′:

• if L′ · L′′ is typed, then so are L′ and L′′,

• if L′∗ is typed, then so is L′,

• if L′ ∪ L′′ is typed, then so are L′ and L′′,

• h(L′ · L′′) = h(L′) · h(L′′),

• h(L′∗) = h(L′)∗,

• h(L′ ∪ L′′) = h(L′) ∪ h(L′′),

this proves that r′ = h(r) (by induction on the length of r). Because h(r) = IntI(L) = L,

the regular expression r′ thus obtained denotes the language L. This completes the proof

that every language L ∈ Int(RLIN) can be denoted by a regular expression. Together with

the first two parts, this third part concludes the overall proof that the new characterization

indeed exactly characterizes the class Int(RLIN) we already know.

10.2 Using the sequential pseudo base set

Having obtained the result of the previous section, we can easily make it stronger by using

the results from Chapter 5. In this way, we can characterize Int(RLIN) as the smallest class

of hypergraph languages that is closed under concatenation, union, and Kleene closure, and

that contains the singleton class derived from the sequential pseudo base set. In addition

to what we already proved in the previous section, it now suffices to only prove that every

singleton language in HGR can be represented by an expression over the sequential pseudo

base set and sequential composition. Or, formally expressed, HGR
·

−→ LB. But this we

have already proved in Section 5.10, so we are done.

1See for example Hopcroft and Ullman [HU79, §2.5], or Carroll and Long [CL89, §6.2].



Using the full base set 93

Recall that the sequential pseudo base set contains exactly all hypergraphs that have

at most one edge. So, intuitively, this characterization says that Int(RLIN) is the smallest

class of hypergraph languages that is closed under concatenation, union, and Kleene clo-

sure, and that contains all singleton hypergraph languages {H} where H has zero or one

edges.

10.3 Using the full base set

The same as in the previous section can be done for the full base set. Now, we characterize

Int(RLIN) as the smallest class of hypergraph languages that is closed under concatenation,

parallel composition, union, and Kleene closure, and that contains the singleton class

derived from the full base set (this is the same characterization as given at the beginning of

this chapter). The additionally needed proof follows directly from the fact that Int(RLIN)

is closed under parallel composition (Section 9.5), and HGR
·,+
−→ LC .

Recall that the full set consists of all “edges” and six “auxiliary hypergraphs”. So,

intuitively, this characterization says that Int(RLIN) is the smallest class of hypergraph

languages that is closed under concatenation, parallel composition, union, and Kleene

closure, and that contains all “edges” (and a few auxiliary hypergraphs).

10.4 Conclusions

There is strong resemblance between the characterization given at the beginning of this

chapter, and the characterization (from formal language theory) of RLIN as the smallest

class that is closed under concatenation, union, and Kleene closure, and that contains all

“symbols” (i.e., languages of the form {a}, where a is a symbol). Just as that characteriza-

tion intuitively says “the class of regular string languages can be build by regular expres-

sions over the basic building blocks, namely symbols”, ours says “the class Int(RLIN) can

be build by regular expressions over the basic building blocks, namely edges”. We think

that because of this resemblance, Int(RLIN) deserves to be called “the class of regular

graph languages”.





There’s too many men, too many people,

making too many problems. Can’t you

see this is a land of confusion?

— Phil Collins 11
Other literature

More than 20 years ago, the concept of a graph grammar was introduced by A. Rosenfeld

as a formulation of some problems in pattern recognition and image processing, as well as

by H. J. Schneider in Germany as a method for data type specification. In this chapter

we will make a comparison between our Int(K) classes of hypergraph languages, and

some classes of hypergraph languages generated by graph grammars on which results have

been published in the scientific literature. In particular we will find that Int(RLIN) ≈

LIN-CFHG1, where LIN-CFHG is the class of (languages generated by) linear context-free

hypergraph grammars, as defined by Engelfriet and Heyker.

11.1 Introduction

Be aware that there is no universally, or even widely, agreed on concept of the “right” way

to define a graph grammar. Instead, there are many fundamentally different approaches.

For example: what should nonterminals stand for, nodes, edges, or perhaps even something

else? As a consequence of this controversy, seemingly simple questions like “what is context

freeness with regard to a graph grammar?” have no conclusive answer (yet).

Although our means of defining hypergraph languages by interpretation has strictly

spoken little or nothing to do with a graph grammar, a string grammar/interpreter pair

1We write ≈ instead of = because their hypergraphs have only one sequence of external nodes, while

ours have two. Except for that small matter, both classes are completely identical. We will turn this into

a precise formal statement, and prove it, in Section 11.4.

95



96 Other literature

is, in our view, a “graph grammar in disguise”. Not surprisingly, some of our results (for

example, our claim that the class Int(RLIN) deserves to be called “the class of regular

graph languages”, and the decomposition of HGR(∆) in a base set) are strikingly similar

to some results derived using a hyper-edge replacement graph grammar approach. Hence

the title of this thesis: “Graphs Grammars and Operations on Graphs”.

In what follows, we will make comparisons to work of Engelfriet and Heyker ([EH91],

[EH92]), Bauderon and Courcelle ([BC87]), and Habel and Kreowski ([Hab92]), all of which

are hyper-edge replacement oriented approaches.

No comparison whatsoever is made with node-replacement oriented approaches. It

may be interesting to observe that node replacement is in general more powerful than edge

replacement. For example, the set of all complete graphs can easily be generated by a node-

replacement graph grammar, but not by means of the above mentioned edge-replacement

graph grammars.

For an overview of developments in the field, recent proceedings of the “International

Workshop on Graph Grammars and Their Application to Computer Science” ([ENRR87],

[EKR91]) are a good place to start.

11.2 Engelfriet and Heyker

The class Int(RLIN) we defined is very similar to the class LIN-CFHG defined by Engelfriet

and Heyker in 1991 [EH91]. Before we can make precise statements, however, we need a

way to “translate” their notion of “hypergraphs” into our idea of hypergraphs as defined

in Chapter 2.

For clarity’s sake, we will call the “hypergraphs” as defined by Engelfriet and Heyker

BC-hypergraphs2, and correspondingly their equivalent of our set of all hypergraphs over a

ranked alphabet ∆, HGR(∆), we will call BC-HGR(∆). The reader is referred to [EH91,

pages 330–331] for the exact definitions of BC-hypergraphs, and the notation involved. Let

it suffice here to summarize that BC-hypergraphs are very much like our hypergraphs albeit

that they do not distinguish between input nodes and output nodes. Instead, they have

only one kind of external node, called external node(!)3. The sequence of all external nodes

is called ext. A BC-hypergraph H is denoted as: H = (V, E,nod, lab, ext), where V , E,

nod, and lab are defined in the same manner as we do, and ext ∈ V ∗. The “type” of a

BC-hypergraph is called rank, and is defined as the length of ext: rank(H) = |ext|. This

2After Bauderon and Courcelle, who first proposed this kind of hypergraph.
3Note the difference between an external node of a BC-hypergraph, as defined here, and an external

node of a hypergraph in our definition, as defined on page 22. Luckily, although defined on different kinds

of hypergraphs, both concepts of external node stand for exactly the same thing.



Context-Free Hypergraph Grammars 97

brings us to our translation functions Γ and Γ←. Let ∆ be a ranked alphabet.

Γ : BC-HGR(∆) → HGR(∆), for a BC-hypergraph H = (V, E,nod, lab, ext) :

Γ(H)
def
= (V, E,nod, lab, ext, λ),

Γ← : HGR(∆) → BC-HGR(∆), for a hypergraph H = (V, E,nod, lab, in,out) :

Γ←(H)
def
= (V, E,nod, lab, in · out).

Note that for Γ(H) we simply use the sequence of external nodes of H as input nodes,

and leave the sequence of output nodes empty. For Γ←(H) we concatenate in and out

and use this product as sequence of external nodes. Be aware that although Γ and Γ←

are each other’s inverse in some sense, they are not so mathematically speaking. The

connection between the two of them is as follows (let H ∈ HGR(∆) of type (m → n), and

H ∈ BC-HGR(∆) for some ranked alphabet ∆):

Γ←(Γ(H)) = H, (11.1)

Γ(Γ←(H)) = backfold(H), (11.2)

splitm,n(Γ(Γ←(H))) = H. (11.3)

The proofs follow immediately from the definitions involved. Note that from (11.2), (11.3),

and (6.12) it follows that for any class K of hypergraph languages that is closed under

split, we have:

split(Γ(Γ←(K))) = K. (11.4)

11.3 Context-Free Hypergraph Grammars

Using BC-hypergraphs, Engelfriet and Heyker follow a hyperedge replacement graph gram-

mar approach to define classes of graph languages. Their grammars have the form (Σ, ∆,

P, S), where Σ is the (ranked) alphabet of edge labels, ∆ ⊆ Σ is the alphabet of terminal

edge labels, P is the (finite) set of productions, and S ∈ Σ − ∆ is the initial nonterminal.

Every production π in P is of the form π = (X, H), where X ∈ Σ − ∆ is a nonterminal

symbol, and H ∈ BC-HGR(Σ) is a hypergraph, such that rankΣ(X) = rank(H).

In short, a derivation in such a grammar proceeds as follows. Let n = rankΣ(S). To

begin, one takes a hypergraph which consists only of one edge, labeled S, and n nodes, all

of which external:

({v1, . . . , vn}, {e},nod(e) 7→ (v1, . . . , vn), lab(e) 7→ S, (v1, . . . , vn)).



98 Other literature

Then in each step, one chooses an edge labeled by a nonterminal symbol X ∈ Σ − ∆, and

a production π = (X, H). The hypergraph under consideration then gets his chosen edge

replaced with the hypergraph H, where the former attachment nodes of the tentacles of

the edge get identified with the corresponding external nodes of H. This edge replacement

process continues until we reach the moment where all edge labels are terminal. At that

point, our derivation has completed. Note that all “sentential forms”, including the finally

derived hypergraph, are of rank n.

For a given grammar G = (Σ, ∆, P, S), the hypergraph language L(G) consists of all

hypergraphs over ∆ that have a derivation in G. The class of all hypergraph languages ob-

tainable in this way, is denoted CFHG, standing for “Context-Free Hypergraph Grammar”.

If we put the restriction on the grammars that the right hand side of a production may

at most contain one nonterminal edge, we get the class LIN-CFHG (for Linear Context-

Free Hypergraph Grammar). Loosely speaking, we will also use LIN-CFHG and CFHG to

denote the sets of their grammars.

11.4 split(Γ(LIN-CFHG)) = Int(RLIN)

Firstly, we prove split(Γ(LIN-CFHG)) ⊆ Int(RLIN). Given a linear grammar G = (Σ, ∆,

P, S) conform [EH91], and two integers m, n ∈ N such that rank(S) = m+n, we construct4

a right-linear typed grammar G′ = (N ′, T ′, P ′, S ′), that generates the typed language L(G′)

of type (m → n), and an interpreter I ′ = (Σ′, ∆′, h′) (where Σ′ = T ′ and ∆′ = ∆) for L(G),

such that IntI(L(G′)) = splitm,n(Γ(L(G))):

• N ′ = (Σ − ∆) ∪ {D}, D /∈ (Σ − ∆),

where for A ∈ N ′, A 6= D, its type is defined by #inN ′(A) = rankΣ(A) + n, and

#outN ′(A) = 0. For D, #inN ′(D) = m, and #outN ′(D) = n,

• T ′ = { aπ | π ∈ P } ∪ {b},

where for π = (X, H), the type of aπ is defined by #inT ′(aπ) = rank(H) + n =

rankΣ(X) + n, and #outT ′(aπ) = rankΣ(labH(nont(H))) + n if H contains one

nonterminal, and 0 otherwise. For b, #inT ′(b) = m, and #outT ′(b) = m + 2n,

• P ′ = { pπ | π ∈ P } ∪ {q}.

4The construction is based on splitm,n(Γ(H)) = (Um + fold(Un)) · (Γ(H) + Un), by (6.28).



split(Γ(LIN-CFHG)) = Int(RLIN) 99

If π = (X, H) and H contains exactly one nonterminal edge (namely nont(H)), then

the production pπ looks as follows5:

pπ : X → aπlabH(nont(H)),

h′(aπ) = (VH, EH − nont(H),nodH, labH, extH,nodH(nont(H))) + Un.

If π = (X, H) and H does not contain a nonterminal edge (the only other alternative;

as G is linear H cannot contain more than one nonterminal edge) then the production

pπ looks as follows:

pπ : X → aπ,

h′(aπ) = Γ(H) + Un.

The production q is defined as follows:

q : D → bS,

and h′(b) = Um + fold(Un),

• S ′ = D,

• Σ′ = Σ, ∆′ = ∆, and h′ as defined above.

We now claim that splitm,n(Γ(L(G))) = IntI(L(G′)). Instead of giving a full formal proof,

we will give the invariant that describes the relation between the derivations in G and G′.

Invariant:

For all H ∈ BC-HGR(Σ), and j ∈ N:

G : S ⇒j H

⇐⇒

∃w∈T ′∗,A∈N ′

(

G′ : S ⇒j wA and h′(w) · (H(A) + Un) = Γ(H) + Un

)

,

where, for k = rankΣ(A):

H(A) = ({v1, . . . , vk}, {e},nod(e) 7→ (v1, . . . , vk), lab(e) 7→ A, (v1, . . . , vk), λ).

The proof of the correctness of this invariant, and of the fact that our claim follows from

it, then proceeds along similar lines as in the comparable proof in Section 8.1. The validity

5Note the λ-case! (See also the footnote on page 14.)



100 Other literature

of this claim completes the proof of split(Γ(LIN-CFHG)) ⊆ Int(RLIN).

Conversely, we prove split(Γ(LIN-CFHG)) ⊇ Int(RLIN). Given a right-linear typed

grammar G = (N, T, P, S) that generates the typed language L(G) of type (m → n),

and an interpreter I = (Σ, ∆, h) (where Σ = T ) for L(G), we construct a LIN-CFHG

grammar G′ = (Σ′, ∆′, P ′, S ′) such that L(G′) = Γ←(IntI(L(G))), and hence, by (11.3),

splitm,n(Γ(L(G′))) = IntI(L(G)):

• Σ′ = N ∪ ∆,

where for a ∈ Σ′, rankΣ′(a) =







#inN(a) + #outN(a) if a ∈ N,

rank∆(a) if a ∈ ∆,

• ∆′ = ∆ (the ranks of its symbols have already been determined above),

• P ′ = { πp | p ∈ P }.

If p has the form p : A → wB, and m′ = #outT (w) = #inN(B), then the production

πp looks as follows6:

πp = (A,Γ←(h(w) · H(B))),

where:

H(B) = ({v1, . . . , vm′+n}, {e},nod(e) 7→ (v1, . . . , vm′+n),

lab(e) 7→ B, (v1, . . . , vm′), (vm′+1, . . . , vm′+n)).

Note that this H is type preserving.

If p : A → w, then the production πp looks as follows:

πp = (A,Γ←(h(w))),

• S ′ = S.

We now claim that splitm,n(Γ(L(G′))) = IntI(L(G)). Again, instead of giving a full formal

proof, we will give the invariant that describes the relation between the derivations in G

and G′.

6Note the λ-case! (See also the footnote on page 14.)



Int(RLIN)  Int(CF) 101

Invariant:

For all H ∈ BC-HGR(Σ′), and j ∈ N:

∃w∈T ∗,A∈N

(

G : S ⇒j wA and H = Γ←(h(w) · H(A))
)

⇐⇒

G′ : S ′ ⇒j H.

The validity of this claim completes the proof of split(Γ(LIN-CFHG)) ⊇ Int(RLIN).

Together with the previous result split(Γ(LIN-CFHG)) ⊆ Int(RLIN), this completes the

overall proof of split(Γ(LIN-CFHG)) = Int(RLIN).

What does this mean, i.e., what does split◦Γ do? Well, Γ just translates the sequence

ext of a BC-hypergraph in the sequences in = ext, and out = λ, of an i/o-hypergraph.

Then, split just redistributes all input nodes over in and out, in all possible ways such

that the order stays the same (i.e., in · out stays invariant). So, split ◦ Γ does not change

the structure of its argument at all! The only thing it does is translate and redistribute

external nodes. Therefore, intuitively speaking, LIN-CFHG contains exactly the same

hypergraph languages as Int(RLIN), albeit that the former contains BC-hypergraphs, and

the latter i/o-hypergraphs.

11.5 Int(RLIN)  Int(CF)

The proof of Int(RLIN)  Int(CF) is quite involved. We will derive it from a result by

Engelfriet and Heyker [EH91], who in turn rely on a result by Greibach [Gre78].

Firstly, by (8.1), it is obvious that Int(RLIN) ⊆ Int(CF). Secondly, on page 357

of [EH91] it is shown that there exists a string language L ∈ L(CF), such that L /∈

STR(LIN-CFHG), so7 we also have L /∈ STR(Int(RLIN)). From this, by the Power of

Interpretation theorem I (or more specifically, by (8.8) for K = {L}), it follows that:

∃L∈Int(L) L /∈ Int(STR(Int(RLIN))),

so by the results from Section 8.3:

∃L∈Int(L) L /∈ Int(RLIN).

Choose such a hypergraph language L. Now, as L ∈ L(CF), by (7.5), we have Int(L) ⊆

Int(CF). Therefore, L /∈ Int(RLIN), and at the same time, L ∈ Int(CF). This completes

the proof of Int(RLIN)  Int(CF).

7Note that, in [EH91], STR is defined slightly different than here. In this section, however, we will only

use STR(LIN-CFHG), which is equal to STR(Int(RLIN)), as can be seen from the respective definitions

of STR, and the results from Section 11.4.



102 Other literature

11.6 Int(CF)  split(Γ(CFHG))

In a sense, Int(CF) is completely contained in CFHG, but the opposite does not hold:

there are hypergraph languages in CFHG that have no equivalent in Int(CF). Formally

expressed:

Int(CF)  split(Γ(CFHG). (11.5)

In order to prove this, we need to do two things. Firstly, we will give a hypergraph language

L, the language of all binary trees, such that L /∈ Int(CF) and L ∈ split(Γ(CFHG)).

Then, secondly, for every hypergraph language L ∈ Int(CF) of type (m → n), we will give

a graph grammar G′ ∈ CFHG such that splitm,n(Γ(L(G′))) = L.

Firstly, the language L of all binary trees. By a binary tree we here mean an ordinary

graph of type (0 → 0) that forms a binary tree, and where the direction of all edges is

from root to leaves. Instead of giving a complete formal definition, we give an example

(the edge labels have been left out, as they are all a):

u��
�

�
�

�
�

��

�
�

�
�

��3

Q
Q

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

QQs

u������

����*

HHHHHH

HHHHj

u������

����*

HHHHHH

HHHHj

u������

����*

HHHHHH

HHHHj

u

u������

����*

HHHHHH

HHHHj

u

u

u������

����*

HHHHHH

HHHHj

u

u������

����*

HHHHHH

HHHHj

u

u

u

u

This language L is not in Int(CF), as it is of bounded degree 3, but by [Len82] not of

bounded cutwidth. Such a language, as we have proven in Section 7.6, can impossibly be

obtained by interpretation.

That L is indeed in split(Γ(CFHG)), is shown by the following grammar G ∈ CFHG.

G = (Σ, ∆, P, S), where Σ = {a, A, S} (a of rank 2, A of rank 1, and S of rank 0), ∆ = {a},



Int(CF)  split(Γ(CFHG)) 103

P = {π1, π2, π3}. The three productions in P look as follows (we mimic the notation of

[EH91]):

S ::= u A1 A ::= u1 ������

����*
a

HHHHHH

HHHHja

u

u

A1

A1

A ::= u1

Clearly, this G generates all binary trees, or formally, split0,0(Γ(L(G))) = L. Therefore,

L ∈ split(Γ(CFHG)).

Secondly, for a given hypergraph language L ∈ Int(CF) of type (m → n), we will

construct a graph grammar G′ ∈ CFHG such that L(G′) = Γ←(L), so splitm,n(Γ(L(G′))) =

L. This grammar G′ can be constructed as follows8. Let G = (N, T, P, S) be a typed

grammar, and I = (Σ, ∆, h) (where Σ = T ) an interpreter for L(G), such that IntI(L(G)) =

L. Now choose G′ = (Σ′, ∆′, P ′, S ′) as follows:

• Σ′ = N ∪ ∆,

where for a ∈ Σ′, rankΣ′(a) =







#inN(a) + #outN(a) if a ∈ N,

rank∆(a) if a ∈ ∆,

• ∆′ = ∆ (the ranks of its symbols have already been determined above),

• P ′ = { πp | p ∈ P }.

If p has the form9:

A0 → w1A1w2 . . . wk−1Ak−1wk,

for some k ≥ 1, and for all 1 ≤ i < k, mi = #inN(Ai) and ni = #outN(Ai), then

the production πp looks as follows:

πp = (A0,Γ
←(h(w1) · H(A1) · h(w2) · . . . · h(wk−1) · H(Ak−1) · h(wk))),

where:

H(Ai) = ({v1, . . . , vmi+ni
}, {e},nod(e) 7→ (v1, . . . , vmi+ni

), lab(e) = Ai,

(v1, . . . , vmi
), (vmi+1, . . . , vmi+ni

)) : mi → ni.

Note that this H is type preserving.

8The construction is a more-or-less straightforward extension of the second construction in Section 11.4.
9Note the λ-case! (See also the footnote on page 14.)



104 Other literature

• S ′ = S.

We now claim that splitm,n(Γ(L(G′))) = L. Instead of giving a full formal proof, we will

give the invariant that describes the relation between the derivations in G and G′.

Invariant:

For all H ∈ BC-HGR(Σ′), k = |nont(H)| + 1, and j ∈ N:







∃ w1,...,wk∈T ∗

A1,...,Ak−1∈N








G : S ⇒j w1A1w2 . . . wk−1Ak−1wk

and

H = Γ←(h(w1) · H(A1) · h(w2) · . . . · h(wk−1) · H(Ak−1) · h(wk))















⇐⇒

G′ : S ′ ⇒j H.

By the validity of our claim, and because L(G′) ∈ CFHG (by definition), we now have

L ∈ split(Γ(CFHG)). This proves that Int(CF) ⊆ split(Γ(CFHG)). Together with the

first part, this completes the overall proof of Int(CF)  split(Γ(CFHG)).

11.7 Bauderon and Courcelle

The hypergraphs defined by Bauderon and Courcelle ([BC87]), are the same BC-hyper-

graphs we mentioned earlier in Section 11.2, except for minor notational differences. The

(single) sequence of external nodes is called the sequence of sources, denoted src, and the

incidence function is called vert (for vertices, i.e., nodes). To translate back and forth

between our hypergraphs and these hypergraphs we will use the same functions Γ and Γ←

we used in Section 11.2.

Bauderon and Courcelle define three kinds of operations on BC-hypergraphs:

• Sum, a binary operation, denoted by H ⊕ H′,

• Redefinition of Sources, a unary operation, denoted by σα(H),

• Source Fusion, a unary operation, denoted by θδ(H).

Loosely speaking, these operations perform the following actions. Let H and H′ be arbi-

trary BC-hypergraphs of rank n and rank n′ respectively. The operation H ⊕ H′ does the

same thing as our parallel composition, but note the fact that it operates on hypergraphs

that have only one sequence of external nodes. The sum H ⊕ H′ has rank n + n′. The



Bauderon and Courcelle 105

operation σα(H), where α is a mapping from [m] to [n] redefines the sequence of n source

nodes of H in a new sequence of m source nodes, in such a way that, for 1 ≤ i ≤ m, the new

source node i is the old source node α(i). So, σα(H) is of rank m. The operation θδ(H),

where δ is an equivalence relation on [n] (intuitively: on the external nodes), identifies

those external nodes srcH(i), srcH(j), 1 ≤ i, j ≤ n, such that (i, j) ∈ δ. So intuitively,

θδ(H) identifies those external nodes of H that are in the relation (as implied by) δ. The

result is again a BC-hypergraph of rank n.

These operations can be expressed in terms of our sequential and parallel composition,

and sequential and parallel composition can be expressed in terms of ⊕, σα, and θδ. in

the following way. Let H and H′ be arbitrary BC-hypergraphs of rank n and rank n′

respectively.

Sum:

The sum H ⊕ H′ can be expressed in terms of + as follows:

Γ(H ⊕ H′) = Γ(H) + Γ(H′).

Redefinition of Sources:

For a mapping α from [m] to [n], σα(H) can be expressed in terms of · as follows:

Γ(σα(H)) = Hα · Γ(H),

where Hα = ({v1, . . . , vn},∅,∅,∅, (vα(1), . . . , vα(m)), (v1, . . . , vn)) : m → n.

Source Fusion:

For an equivalence relation δ on [n], θδ(H) can be expressed in terms of · as follows:

Γ(θδ(H)) = Hδ · Γ(H),

where Hδ = ([n]/δ,∅,∅,∅, ([1]δ, . . . , [n]δ), ([1]δ, . . . , [n]δ)) : n → n.

Parallel Composition:

The parallel composition of two hypergraphs H : m → n and H ′ : m′ → n′ can be expressed

in terms of ⊕ and σα as follows:

Γ←(H + H ′) = σα(Γ←(H) ⊕ Γ←(H ′)).



106 Other literature

Here α denotes a mapping from [m + m′ + n + n′] to [m + n + m′ + n′], defined by:

α(i) =







i for 1 ≤ i ≤ m,

i + n for m + 1 ≤ i ≤ m + m′,

i − m′ for m + m′ + 1 ≤ i ≤ m + m′ + n,

i for m + m′ + n + 1 ≤ i ≤ m + m′ + n + n′.

Sequential Composition:

The sequential composition of two hypergraphs H : m → n and H ′ : n → k can be

expressed in terms of σα and θδ as follows:

Γ←(H · H ′) = σα(θδ(Γ
←(H) ⊕ Γ←(H ′))).

Here δ denotes the smallest equivalence relation on [m+2n+k] that contains the following

pairs:

{ (i, j) | m + 1 ≤ i ≤ m + n and j = i + n } ,

and α is the mapping from [m + k] to [m + 2n + k] defined by:

α(i) =







i for 1 ≤ i ≤ m,

i + 2n for m + 1 ≤ i ≤ m + k.

Concluding, we have now proved that the operations ⊕, σα, and θδ can be expressed

in terms of · and +, and vice versa. Intuitively, this means that the graph grammars

(or rather expression grammars, where the expressions define graphs) that are defined

by Bauderon and Courcelle in [BC87], could also have been defined using sequential and

parallel composition, in such a way that their power stays exactly the same (it cannot

increase, as the emulation of the operations goes both ways). Neither the formal expression

of this intuition, nor its proof, are trivial. As both are beyond the scope of this thesis, we

will make no attempt at formulating them.

11.8 Habel and Kreowski

In their paper “May we introduce to you: hyperedge replacement” [ENRR87, page 15–26]

Habel and Kreowski make a strong case for taking a hypergraph edge rewriting approach

to graph grammars. The hypergraphs they define look very much like our hypergraphs,

having a sequence of “input” nodes (called begin) and a sequence of “output” nodes (called

end). However, they differ in the fact that the hyperedge-label alphabet is ranked instead



Further reading 107

of typed. Consequently, their hyperedges have two kind a tentacles: source tentacles, and

target tentacles. This makes the hyperedge replacement scheme they propose conceptually

very easy: one “lifts” a hyperedge out of a hypergraph, and then inserts an edge replacing

hypergraph, thereby connecting the begin and end sequences to the former source and

target nodes of the removed edge.

In this respect, their approach looks very much like the approach taken by Bauderon and

Courcelle (and, later, by Engelfriet and Heyker), albeit that Habel and Kreowski choose

to have two sequences of external nodes per hypergraph, and two sequences of tentacles

per hyperedge. As Bauderon and Courcelle correctly point out [BC87, page 113], this does

not increase the power of formalism: both kinds of graph grammars can be emulated by

the other. Therefore, it may be considered a matter of taste whether one wants one or two

sequences of external nodes. In the above mentioned paper Habel and Kreowski argue, by

giving quite a few real-life examples, that having two sequences is preferable.

However, in order to avoid some complications that arise with identification, Habel and

Kreowski do not allow nodes to appear more than once in the begin and end sequences of

a graph. This puts a real restriction on the class of graph languages that can be generated,

albeit not a severe one. Informally speaking, the same languages that could by generated

without this restriction can still be generated, minus the non identification-free graphs they

contained. This was proved by Engelfriet and Heyker in 1992, see [EH92, page 171].

11.9 Further reading

As noted, for an overview of recent developments in the field of graph grammars, [ENRR87]

and [EKR91] are a good place to start, especially because they contain comprehensive

tutorials. Furthermore, the Ph.D. thesis of Habel [Hab92] contains lots of interesting

results. As a matter of fact, at the time of this writing it is the only existing book on

the (modern) theory of context-free graph grammars, and one of the few books at all, and

probably the most up-to-date one, on graph grammars.

Finally, the reader should be well aware of the fact that there is a large area of the

field that has been barely touched upon in this master’s thesis: node replacement graph

grammars. For an introduction to this kind of approach, read the tutorials by Engelfriet

and Rozenberg, [ENRR87, page 55–66] and [EKR91, page 12–23].





There was things which he stretched

but mainly he told the truth.

— Mark Twain 12
Summary

This thesis is about the formalism of interpretation. This concept is closely linked to that

of a graph grammar. In Chapter 2 we extended the well-known concepts of grammars and

languages to typed variants of them. We had to do this to be able to exercise strong control

on the types of our objects, in order to ensure they are properly defined. Then we defined

a special kind of graph, the i/o-hypergraph (Chapter 3). On this type of graph, we defined

two main operations: sequential composition and parallel composition (Chapter 4), which

can be used to compose larger graphs from smaller ones. The relation between the two, and

some of their properties were investigated. Then in Chapter 5 we looked at the opposite:

decomposing large graphs into smaller ones. We found a small set of small graphs, called

the full base set, that serve as building blocks to build all other graphs with sequential and

parallel composition.

In Chapter 6, we defined several more operations (of minor importance than composi-

tion) on graphs, and gave some properties. These were mainly needed in proofs of theorems

that do not contain these operations, but still intuitively are based on them. These oper-

ations seem quite natural to us, and their properties have a beauty of their own.

Having defined all the above concepts, we were finally able to introduce the pivot of this

thesis: interpretation (Chapter 7). Interpretation is a mechanism by which we can obtain

a graph language, on the basis of a given string language. As we argued, the formalism

of interpretation may be considered a special kind of an edge-rewriting graph grammar

formalism, albeit in disguise. We gave a few examples of how interpretation works, and

developed a normal form for it. Furthermore, we proved that if a graph language obtained

109



110 Summary

by interpretation has bounded degree, it must also have bounded cutwidth.

Now having completely defined interpretation, in Chapter 8 we turned to the power of

our formalism. We looked at right-linear, linear, and derivation-bounded languages, and

found that all three yield the same class of hypergraph languages under interpretation.

However, the class of all context-free languages under interpretation does give a larger class

of hypergraph languages. We also proved (Section 8.3) that “repeated” interpretation (in

some sense), usually does not increase its power. Finally, we gave two theorems on the

power of interpretation.

The first one gives, given a class K ′ that satisfies some closure properties, the largest

class K such that Int(K) is still contained in Int(K ′). The second one, intuitively, says

that for two classes of string languages K and K ′, if we want to know whether Int(K)

and Int(K ′) are equal, we just have to check some simple closure properties, and prove

the equality for the string graphs in Int(K) and Int(K ′) only.

In Chapter 9, we examined the closure properties of Int(K) in terms of sufficient closure

properties on K, in particular for closure under sequential and parallel composition, union,

Kleene closure, fold, backfold, split, flip, and edge relabeling.

Then, in Chapter 10 we showed that the class of all regular languages under interpre-

tation is identical to the smallest class of hypergraph languages that is closed under both

sequential and parallel composition, union, and Kleene closure, and that contains the full

base set. As a similar characterization is used in traditional formal language theory to

define the class of all regular languages, it can be argued that Int(RLIN) deserves to be

called “the class of all regular hypergraph languages”.

To conclude, in Chapter 11 we looked at a few other formalisms for graph grammars

that have been described in the literature. We made a comparison between some of the

classes of hypergraph languages we defined, and some of those that have been described by

others. In particular we found that Int(RLIN) ≈ LIN-CFHG, which may also be used to

argue that this class deserves to be called “the class of all regular hypergraph languages”.



So long, and thanks for all the fish.

— Douglas Adams 13
Acknowledgments

First and foremost, I would like to thank dr. Joost Engelfriet. For the honesty of rejecting

preliminary versions of this thesis time after time, and for the extensive weekly guidance.

For teaching me how to transform my vague intuitions into solid mathematical writing

(did I make progress, or did you give up?), and for more than a year of pleasant Tuesday

afternoon conversations. You have been as good a thesis supervisor as one could wish for,

and I am in your debt for the numerous suggestions and ideas that have finally led to this

thesis.

Then, I would like to thank drs. Gerard Borsboom for teaching me TEX and putting

up with the silly questions. Also thanks to Hans van Dongen for laboriously proofreading

the complete final draft, for laughing himself to tears over a quite erroneous version of

Section 5.6, and for all the beer. Thanks to Huibert Kreb for pointing out the difference

between inherently true propositions, which need no proof, and true theorems, which are

merely true by virtue of their proof, and will loose their validity real soon after that proof

gets lost (see [Kre92]).

Furthermore thanks to ir. Erik Olofsen, ir. Tycho Lamerigts, Carin Tiggeloven, and

Maarten van Dantzich, for their various useful comments, and to dr. Hendrik-Jan Hooge-

boom for showing me how real books number empty pages (they don’t). Thanks to ir. Erik

Kruyt too, for generously providing computer facilities, and to the various people who were

involved in creating the TEX, METAFONT, emTEX, LaTEX, and AMS-LaTEX suites of type-

setting software, all of which were extensively used in creating this document.

This thesis would not have been possible without the help of drs. Frits Vereijken and

111



112 Acknowledgments

Berth Vereijken-Baeten, whom I thank for their continuous moral and financial support

throughout my study.

Last but not least, I am greatly indebted to Tieleke Stibbe, for being my main source of

inspiration, and for trying to understand the difference between hypergraphs, hypergraph

languages, and classes of the latter. It is to you, with love, I dedicate this thesis.

Jan Joris Vereijken,

Leiden, May 19, 1993.



The nice thing about standards is that

there are so many to choose from.

— Andrew S. Tanenbaum A
Naming conventions

The names of variables, functions, etc. are called identifiers. In assigning those names we

have strictly adhered to the following conventions.

• Uppercase roman letters:

– For propositions we use a P, or a Q.

• Uppercase italic letters:

– For sets in general we use letters late in the alphabet: V , W .

– For a set that is a string language we use an L. For one that is a class of

languages a K. For a set of terminal symbols: T . For a set of nonterminal

symbols: N . For a set of productions: P or Q. For a set of vertices: V . For a

set of edges: E.

– For the starting symbol in a nonterminal alphabet an S.

– For grammars: G. For a property of grammars: X.

– For hypergraphs we use letters near “H”: H, G, F .

– For interpreters we use an I.

– For nonterminal symbols we use letters early in the alphabet: A, B, C, D.

113



114 Naming conventions

• Lowercase italic letters:

– For integers we use letters near the middle of the alphabet: n, m, k, l, i, j, r,

p, q.

– For terminal symbols we use letters early in the alphabet: a, b, c, d. The a is

also used for a symbol in general.

– For functions in general we use letters near “f”: f , g, h.

– For productions we use letters near “p”: p, q.

– For strings over terminal symbols we use letters near the end of the alphabet:

w, v, u, z.

– For vertices: v, w, u, z. For edges: e.

– For (regular) expressions: r.

• Greek upper case letters:

– For alphabets: Σ, ∆.

• Greek lower case letters:

– For strings over terminal symbols, nonterminal symbols, or both, we use letters

early in the alphabet: α, β, γ, δ.

– For morphisms on string languages: σ.

– For numbers that denote a maximum or minimum in some sense: µ.

• Other cases:

– For ad hoc functions that yield hypergraphs we use bold uppercase italic letters

near “H”: H , G, F .

– For hypergraph languages, and occasionally for sets of hypergraphs, we use a

bold uppercase italic “L”: L. For classes for hypergraph languages: K.

– For EH-hypergraphs and BC-hypergraphs (see Chapter 11) we will use “calli-

graphic” uppercase letters near “H”: H, G, F .

– General functions on hypergraphs are: #in, #out, flip, fold, backfold, split.

– In specific cases we are allowed to abandon the general naming rules, and in-

troduce identifiers of our own choosing. These must however keep their fixed

meaning throughout the whole thesis. The following is a complete list of them:

N, TRUE, FALSE. L, Lτ , G, Gτ , P , Un, λ, RLIN, LIN, DB, CF, rank, nod,



115

lab, in, out, deg, HGR, BC-HGR, Sing, Int, Γ, Γ←, Ωa, 1m,n, Ππ,π′,k, gr,

STR, match.

– When we refer to results from other sources, we may choose to adapt their

notation. See for example Section 11.4, where we use notation from [EH91].

In general our symbols may be subscripted (e.g., A1, ap, αi) at wish if we need more of

them than are available otherwise. The same holds for priming them (e.g., a′, H ′′), or

barring them (e.g., ā). We also may build new symbols by grouping old symbols together

in a list (e.g., 〈a, i〉, [A1A2A3]). Although some symbols have more than one use (V , u, v,

w, z, p, q and G), this is not a problem in practice.





Seek simplicity, and distrust it.

— Alfred North Whitehead B
Proofs

As a rule, proofs are given right after the theorem they prove. However, some theorems are

small, beautiful, and “obviously” true, but have nonetheless long, tedious, and bothersome

proofs. It is this category of proofs that are not given in the main text, but in this appendix.

B.1 Proofs concerning Section 6.3

The six properties from Section 6.3 can be proven by introducing unity hypergraphs U to

the left and the right of all H’s involved, and then “massaging” the H’s out by applying

(4.10) and the basic properties from Section 6.2. As a result, we get the same proper-

ties back again, but now applied to the unity hypergraphs U only. The thus simplified

properties can then be proven directly by expanding the definitions involved.

We will not write out these proof in full however, as they are very long, and worse, they

do not attribute at all to a better understanding of the properties. Instead, we will give

a graphical representation of the structure of the properties. In the following pictures, a

thick line indicates a hypergraph, and a dot indicates external nodes. An arrow in the line

points form in to out to avoid confusion. Folding is indicated folding the line, and flipping

by flipping it (hence the names!). Finally, a thin-lined bounding box is drawn around the

hypergraph that is formed by evaluating the parallel compositions in the properties. First

we give the equation of the property, and then a picture of the structure.

117



118 Proofs

Property (6.32):

fold(H2) · (flip(H1) + H3) = fold(H1H2H3)

Structure:

u
u�

�?H2 ·

u u�H1

u u-H3
= u

u�
�?H2

u u�H1

u u-H3

Property (6.33):

(H1 + flip(H3)) · backfold(H2) = backfold(H1H2H3)

Structure:

u u-H1

u u�H3
· u

u �
�?H2 =

u u-H1

u u�H3 u
u �

�?H2

Property (6.34):

(H1 + fold(H3)) · (backfold(H2) + H4) = H1H2H3H4

Structure:

u u-H1

u
u�

�?H3

· u
u �

�?H2

u u-H4

=

u u-H1

u
u �

�?H2

u
u�

�?H3 u u-H4



Proofs concerning Section 6.3 119

Property (6.35):

(fold(H2) + flip(H4)) · (flip(H1) + backfold(H3)) = flip(H1H2H3H4)

Structure:

u
u�

�?H2

u u�H4

·

u u�H1

u
u �

�?H3

=

u u�H1

u
u�

�?H2

u
u �

�?H3u u�H4

Property (6.36):

(fold(H2) + fold(H4)) · (flip(H1) + backfold(H3) + H5) = fold(H1H2H3H4H5)

Structure:

u
u�

�?H2

u
u�

�?H4

·

u u�H1

u
u �

�?H3

u u-H5

=

u u�H1

u
u�

�?H2

u
u �

�?H3

u
u�

�?H4 u u-H5



120 Proofs

Property (6.37):

(H1 + fold(H3) + flip(H5)) · (backfold(H2) + backfold(H4)) = backfold(H1H2H3H4H5)

Structure:

u u-H1

u
u�

�?H3

u u�H5

·

u
u �

�?H2

u
u �

�?H4

=

u u-H1

u
u �

�?H2

u
u�

�?H3

u
u �

�?H4u u�H5

B.2 Proofs concerning Section 8.2

The following properties are derived from the properties given in Sections 6.2 and 6.3.

First property:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·







U#out(H1) + U#in(H2)+#out(H2) + · · · + U#in(Hi−1)+#out(Hi−1) + U#in(Hi) +

G1 + fold(G2) + · · · + fold(Gm−1) + flip(Gm) +

U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + · · · + U#in(Hn−1)+#out(Hn−1) + U#in(Hn)








=







H1(H1) + H2(H2) + · · · + Hi−1(Hi−1) +

Hi(HiG1) + Hi+1(G2) + · · · + Hi+m−2(Gm−1) + Hi+m−1(GmHi+1) +

Hi+m(Hi+2) + · · · + Hm+n−3(Hn−1) + Hm+n−2(Hn)








.

(B.1)

Where:

Hj(H) =







H if j = 1,

fold(H) if 1 < j < m + n − 2,

flip(H) if j = m + n − 2.



Proofs concerning Section 8.2 121

under the condition that HiG1 and GmHi+1 are both defined, 1 ≤ i < n, n ≥ 2 and m ≥ 2.

Actually, this property could better be called a “meta property”. By this we mean that

(B.1) is a property that comprises of four similar but distinct properties. We get this four

properties by distinguishing the following four cases:

1 < i < n − 1 and n > 2,

i = 1 and n > 2,

i = n − 1 and n > 2,

i = 1 and n = 2.

If we do this, all four properties can be written without the function H , using flip and

fold instead at the appropriate places.

To prove (B.1) (and to resolve the ambiguity that might arise when one tries to interpret

it!), we write out the four cases in full, and prove them separately.

Firstly, the case where 1 < i < n − 1 and n > 2:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·







U#out(H1) + U#in(H2)+#out(H2) + · · · + U#in(Hi−1)+#out(Hi−1) + U#in(Hi) +

G1 + fold(G2) + · · · + fold(Gm−1) + flip(Gm) +

U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + · · · + U#in(Hn−1)+#out(Hn−1) + U#in(Hn)








=



H1 + fold(H2) + · · · + fold(Hi−1) + fold(HiG1) + fold(G2) + · · · +

fold(Gm−1) + fold(GmHi+1) + fold(Hi+2) + · · · + fold(Hn−1) + flip(Hn)



 ,

(B.2)

under the condition that HiG1 and GmHi+1 are both defined. This property follows directly

from (4.11), as the left-hand side can be written as:

(H1 + fold(H2) + · · · + fold(Hi) + U0 + fold(Hi+1) + · · · + fold(Hn−1) + flip(Hn))

·











U#out(H1) + U#in(H2)+#out(H2) + · · · + U#in(Hi−1)+#out(Hi−1) +
[

U#in(Hi) + G1

]

︸ ︷︷ ︸

connects to fold(Hi)

+ [fold(G2) + · · · + fold(Gm−1)]
︸ ︷︷ ︸

connects to U0

+
[

flip(Gm) + U#out(Hi+1)

]

︸ ︷︷ ︸

connects to fold(Hi+1)

+

U#in(Hi+2)+#out(Hi+2) + · · · + U#in(Hn−1)+#out(Hn−1) + U#in(Hn)












.



122 Proofs

Applying (4.11) now yields the following expression:






H1U#out(H1) + fold(H2)U#in(H2)+#out(H2) + · · ·+ fold(Hi−1)U#in(Hi−1)+#out(Hi−1) +

fold(Hi)[U#in(Hi)
+ G1] + U0[fold(G2) + · · ·+ fold(Gm−1)] + fold(Hi+1)[flip(Gm) + U#out(Hi+1)] +

fold(Hi+1)U#in(Hi+1)+#out(Hi+1) + · · ·+ fold(Hn−1)U#in(Hn−1)+#out(Hn−1) + flip(Hn)U#in(Hn)






which easily reduces to




H1 + fold(H2) + · · · + fold(Hi−1) + fold(HiG1) + fold(G2) + · · · +

fold(Gm−1) + fold(GmHi+1) + fold(Hi+2) + · · · + fold(Hn−1) + flip(Hn)





by applying (4.2) and (6.32). This completes the proof of (B.2).

Secondly, the property (B.1) for the case i = 1 and n > 2 looks like this:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·



G1 + fold(G2) + · · · + fold(Gm−1) + flip(Gm) +

U#out(H2) + U#in(H3)+#out(H3) + · · · + U#in(Hn−1)+#out(Hn−1) + U#in(Hn)





=



H1G1 + fold(G2) + · · · + fold(Gm−1) + fold(GmH2) +

fold(H3) + · · · + fold(Hn−1) + flip(Hn)



 ,

(B.3)

under the condition that H1G1 and GmH2 are both defined. It is proved in a similar way

as (B.2), using, amongst others, (6.32).

Thirdly, the case i = n − 1 and n > 2 is as follows:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·



U#out(H1) + U#in(H2)+#out(H2) + · · · + U#in(Hn−2)+#out(Hn−2) + U#in(Hn−1) +

G1 + fold(G2) + · · · + fold(Gm−1) + flip(Gm)





=



H1 + fold(H2) + · · · + fold(Hn−2) +

fold(Hn−1G1) + fold(G2) + · · · + fold(Gm−1) + flip(GmHn)



 ,

(B.4)

under the condition that Hn−1G1 and GmHn are both defined. This case too is proved in

a way similar as (B.2), using, amongst others, (6.32) and (6.23).



Proofs concerning Section 8.2 123

Finally, the fourth case, i = 1 and n = 2:

(H1 + flip(H2))

·
(

G1 + fold(G2) + · · · + fold(Gm−1) + flip(Gm)
)

=
(

H1G1 + fold(G2) + · · · + fold(Gm−1) + flip(GmH2)
)

,

(B.5)

under the condition that H1G1 and GmH2 are both defined. This case is proved using

(4.11).

Second property:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·







U#out(H1) + U#in(H2)+#out(H2) + · · · + U#in(Hi−1)+#out(Hi−1) + U#in(Hi) +

backfold(G) +

U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + · · · + U#in(Hn−1)+#out(Hn−1) + U#in(Hn)








=







H1(H1) + H2(H2) + · · · + Hi−1(Hi−1) +

Hi(HiGHi+1) +

Hi+1(Hi+2) + · · · + Hn−2(Hn−1) + Hn−1(Hn)








.

(B.6)

Where:

Hj(H) =







H if j = 1 and n > 2,

fold(H) if 1 < j < n − 1 and n > 2,

flip(H) if j = n − 1 and n > 2,

backfold(H) if j = 1 and n = 2.

under the condition that HiGHi+1 is defined, 1 ≤ i < n, and n ≥ 2. As above, this meta

property is distinguished in 4 cases:

1 < i < n − 1 and n > 2,

i = 1 and n > 2,

i = n − 1 and n > 2,



124 Proofs

i = 1 and n = 2.

Note that, in a way, (B.6) can intuitively be considered as the equivalent of (B.1) for the

case m = 1. We write out all cases to prove (B.6).

Firstly, the case 1 < i < n − 1 and n > 2:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·







U#out(H1) + U#in(H2)+#out(H2) + · · · + U#in(Hi−1)+#out(Hi−1) + U#in(Hi) +

backfold(G) +

U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + · · · + U#in(Hn−1)+#out(Hn−1) + U#in(Hn)








=



H1 + fold(H2) + · · · + fold(Hi−1) + fold(HiGHi+1) +

fold(Hi+2) + · · · + fold(Hn−1) + flip(Hn)



 ,

(B.7)

under the condition that HiGHi+1 is defined. The proof of this property can be derived

from (4.11) and (6.36) by rewriting the left hand side as:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·











U#out(H1) + U#in(H2)+#out(H2) + · · · + U#in(Hi−1)+#out(Hi−1) +
[

U#in(Hi) + backfold(G) + U#out(Hi+1)

]

︸ ︷︷ ︸

connects to fold(Hi) + fold(Hi+1)

+

U#in(Hi+2)+#out(Hi+2) + · · · + U#in(Hn−1)+#out(Hn−1) + U#in(Hn)












.

Applying (4.11) now yields:







H1U#out(H1) + fold(H2)U#in(H2)+#out(H2) + · · · + fold(Hi−1)U#in(Hi−1)+#out(Hi−1) +
[
(fold(Hi) + fold(Hi+1)) · (U#in(H1) + backfold(G) + U#out(Hi+1))

]
+

fold(Hi+2)U#in(Hi+2)+#out(Hi+2) + · · · + fold(Hn−1)U#in(Hn−1)+#out(Hn−1) + flip(Hn)U#in(Hn)







.

Rewriting the central part using (6.25) and (6.36) reduces this to:







H1U#out(H1) + fold(H2)U#in(H2)+#out(H2) + · · · + fold(Hi−1)U#in(Hi−1)+#out(Hi−1) +

fold(U#in(Hi)HiGHi+1U#out(Hi+1)) +

fold(Hi+2)U#in(Hi+2)+#out(Hi+2) + · · · + fold(Hn−1)U#in(Hn−1)+#out(Hn−1) + flip(Hn)U#in(Hn)







,



Proofs concerning Section 8.2 125

which in turn easily reduces to



H1 + fold(H2) + · · · + fold(Hi−1) + fold(HiGHi+1) +

fold(Hi+2) + · · · + fold(Hn−1) + flip(Hn)





by applying (4.2) and (4.1). This completes the proof of (B.7).

Secondly, the case i = 1 and n > 2 is as follows:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·



backfold(G) + U#out(H2) + U#in(H3)+#out(H3) + · · · +

U#in(Hn−1)+#out(Hn−1) + U#in(Hn)





=
(

H1GH2 + fold(H3) + · · · + fold(Hn−1) + flip(Hn)
)

,

(B.8)

under the condition that H1GH2 is defined. It is proved in a similar way as (B.7) itself,

using (6.34) instead of (6.36).

Thirdly, the case i = n − 1 and n > 2 is as follows:

(H1 + fold(H2) + · · · + fold(Hn−1) + flip(Hn))

·



U#out(H1) + U#in(H2)+#out(H2) + · · · +

U#in(Hn−2)+#out(Hn−2) + U#in(Hn−1) + backfold(G)





=
(

H1 + fold(H2) + · · · + fold(Hn−2) + flip(Hn−1GHn)
)

,

(B.9)

under the condition that Hn−1GHn is defined. It is proved in a similar way as (B.7) itself,

using (6.35) instead of (6.36).

Finally, the fourth case, i = 1 and n = 2:

(H1 + flip(H2))

·
(

backfold(G)
)

=
(

backfold(H1GH2)
)

,

(B.10)

under the condition that H1GH2 is defined. This case is identical to (6.33).





Bibliography

[BC87] Michel Bauderon and Bruno Courcelle, Graph expressions and graph rewritings,

Mathematical Systems Theory 20 (1987), no. 2 & 3, 83–127.

[BS87] Mario Benedicty and Frank R. Sledge, Discrete mathematical structures, Har-

court Brace Jovanovich, Orlando, FL, 1987, ISBN 0-15-517683-8.

[CL89] John Carroll and Darrell Long, Theory of finite automata, Prentice-Hall, En-

glewood Cliffs, NJ, 1989, ISBN 0-13-913708-4.

[EH91] Joost Engelfriet and Linda Heyker, The string generating power of context-free

hypergraph grammars, Journal of Computer and System Sciences 43 (1991),

no. 2, 328–360.

[EH92] Joost Engelfriet and Linda Heyker, Context-free hypergraph grammars have

the same term-generating power as attribute grammars, Acta Informatica 29

(1992), 161–210.

[EKR91] H. Ehrig, H.-J. Kreowski, and G. Rozenberg (eds.), Graph grammars and their

application to computer science, Lecture Notes in Computer Science, vol. 532,

Springer-Verlag, Berlin, 1991, 4th International Workshop, Bremen, Germany,

March 1990, ISBN 3-540-54478-X.

[EL89] Joost Engelfriet and George Leih, Linear graph grammars: Power and com-

plexity, Information and Computation 81 (1989), no. 1, 88–121.

[ENRR87] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld (eds.), Graph grammars

and their application to computer science, Lecture Notes in Computer Science,

vol. 291, Springer-Verlag, Berlin, 1987, 3rd International Workshop, Warrenton,

Virginia, USA, December 1986, ISBN 3-540-18771-5.

127



128 Bibliography

[ERS80] J. Engelfriet, G. Rozenberg, and G. Slutzki, Tree transducers, L systems, and

two-way machines, Journal of Computer and System Sciences 20 (1980), 150–

202.

[Gre78] S. Greibach, One-way visit automata, Theoretical Computer Science 6 (1978),

175–221.

[Hab92] Annegret Habel, Hyperedge replacement: grammars and languages, Lecture

Notes in Computer Science, vol. 643, Springer-Verlag, Berlin, 1992, ISBN 3-

540-56005-X (originally appeared as Ph.D. thesis, Bremen).

[Her75] I. N. Herstein, Topics in algebra, second ed., John Wiley & Sons, New York,

NY, 1975, ISBN 0-471-02371-X.

[HU79] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, lan-

guages and computation, Addison-Wesley, Reading, MA, 1979, ISBN 0-201-

02988-X.

[Joh84] Richard Johnsonbaugh, Discrete mathematics, Macmillan Publishing Company,

New York, NY, 1984, ISBN 0-02-360900-1.

[Kam50] E. Kamke, Theory of sets, Dover Publications, New York, NY, 1950, ISBN 0-

486-60141-2 (this is a translation from the German second edition called Menge-

lehre.

[Knu73] Donald Ervin Knuth, Sorting and searching, The Art of Computer Program-

ming, vol. 3, Addison-Wesley, Reading, MA, 1973, ISBN 0-201-03803-X.

[Kre92] Huibert L. Kreb, Proving the klets lemma, Stand-up lecture at Leiden Univer-

sity, unpublished, 1992.

[Len82] T. Lengauer, Upper and lower bounds on the complexity of the min-cut linear

arrangement problem on trees, SIAM Journal of Algebraic Discrete Methods 3

(1982), 99–113.



Index

This index contains references to all definitions and notations used in this thesis. It is not

uncommon for something to be defined more than once. For example, “type” is defined on

page 9 (for a symbol) and on page 18 (for a hypergraph). Furthermore, important concepts

and names of persons have been indexed at the relevant places. Definitions are indicated

by a bold-face number, e.g. 42, and references to naming conventions by a slanted number

e.g. 42.

(∅, m → n), 22

(a, n), 7

(m → n), 9, 10

(v1, . . . , vn), 6

−, 5

=τ , 11

A, 113

B, 113

C, 113

D, 113

E, 113

EH , 17

F , 113

G, 113, 115

G :, 7

H, 113

I, 113

K, 113

L, 113

N , 113

P , 113

Q, 113

S, 113

T , 113

Un, 26, 114

V , 113, 115

V/≡, 6

V ∗, 6

V n, 6

VH , 17

W , 113

X, 113

[(v1, . . . , vn)]≡, 6

[. . . ], 115

[m, n], 5

[n], 5

129



130 Index

[v]≡, 6

#, 6

BC-HGR, 115

BC-HGR(∆), 96

∆, 114

G, 7, 114

Gτ , 12, 114

HGR, 18, 115

HGRm,n(∆), 18

Int, 115

Int(K), 48

Int(L), 48

IntI(L), 48

Int→n(K), 48

Intm→n(K), 48

Intm→(K), 48

L, 7, 114

Lτ , 114

Lτ , 11

N, 5, 114

Ωa, 36, 115

P, 113

Ππ,π′,k, 38, 115

Q, 113

STR, 115

STR(K), 21

Σ, 114

Σ∗, 9

Σ+, 9

Sing, 115

Sing(L), 22

α, 114

≈, 6

Γ, 97, 104, 115

Γ←, 97, 104, 115

1m,n, 37, 115

X, 40

backfold, 43, 114

β, 114

F , 114

G, 114

H , 114

K, 114

L, 114

•, 88

F , 114

G, 114

H, 114

∩, 5

|V |, 6

|α|, 6

·, 7, 25

·m,n,k, 26

◦, 6

∪, 5

∪m,n, 23
·,+
−→, 33
·

−→, 33

deg, 18, 115

δ, 114

⇒k, 7

⇒∗, 7

∅, 5, 19

≡, 6

≡io, 22

∃, 6

FALSE, 6, 114

flip, 43, 114

fold, 43, 114

∀, 6

γ, 114

gr, 115

gr(w), 21

#in, 18, 114



Index 131

#inΣ, 9

#out, 18, 114

#outΣ, 9

⇐⇒ , 6

=⇒ , 6

∈, 5

lab, 115

labH , 17

λ, 6, 114

∧, 6

〈. . . 〉, 115

∨, 6

7→, 6

match, 115

max, 5

min, 5

µ, 114

3, 5

nod, 114

nodH , 17

in, 115

inH , 17

out, 115

outH , 17

⊕, 104

P , 114

P(V ), 5
∏

i, 27

rank, 114

rank(H), 96

rankΣ, 7

L∗, 27

Lk, 27

�, 6

\, 5

σ, 114

σα, 104

split, 114

split(K), 45

splitp,q, 43

src, 104

 , 5

⊆, 5
∑

i, 29

!, 5

⊇, 5

θδ, 104

×, 6

TRUE, 6, 114

vert, 104

a, 114

b, 114

c, 114

d, 114

e, 114

f , 114

f−1, 6

f≡, 6

g, 114

h, 114

i, 114

j, 114

k, 114

l, 114

m, 114

n, 114

p, 114, 115

q, 114, 115

r, 114

u, 114, 115

v, 114, 115

w, 114, 115

wR, 7

z, 114, 115



132 Index

abstract graph, 18

algebra, 41

alphabet, 6

ordinary, 6

ranked, 6

typed, 9

AMS-LaTEX, ii, 111

attack

problems worthy of, iii, 4

backfold

in terms of split, 45

backfolding, 44

closure under, 86

Baeten, Berth, 112

base set

full, 42

sequential, 41

Bauderon, Michel, 96, 104, 106, 107

BC-hypergraph, 96

graph grammar using, 97

binary tree, 56, 102

Borsboom, Gerard, 111

bounded cutwidth, 23, 102

theorem on, 54

bounded degree, 23, 102

theorem on, 54

cardinality, 5

CF, 7, 114

CFHG, 97, 98, 102

Chomsky hierarchy, 2

closure

summary table, 89

under +{Un}, {Un}+, 85

under backfolding, 86

under concatenation, 83

under edge relabeling, 88

under flipping, 86

under folding, 86

under Kleene closure, 84

under parallel composition, 86

under sequential composition, 83

under splitting, 88

under union, 84

combinatorics, 41

composition

parallel, 3, 28

relation between sequential and paral-

lel, 29

sequential, 1, 25

concatenation, 10, 27

closure under, 83

concrete graph, 18

context-free grammar, 7

context-free hypergraph grammar, 97

context-free language, 7

correctly internally typed, 9

Courcelle, Bruno, 96, 104, 106, 107

cut, 20

cutwidth, 20

bounded, 23, 102

lemma on, 20

van Dantzich, Maarten, 111

DB, 7, 114

decomposition, 3, 33

full, 33

sequential, 33

definitions

regarding alphabets, 6

regarding classes of languages, 7

regarding functions, 6

regarding grammars, 7

regarding logic, 6

regarding numbers, 5



Index 133

regarding relations, 6

regarding sequences, 6

regarding sets, 5

regarding strings, 7

degree, 18

bounded, 23, 102

vs sequential composition, 27

degree of string graph, 21

Degree versus Cutwidth Theorem, 54

derivation bound, 8

derivation-bounded grammar, 8

derivation-bounded language, 8

disguise

graph grammar in, 2

van Dongen, Hans, 111

edge, see hyperedge

“laying in line”, 20

Edge Normal Form, 51

theorem, 51

edge relabeling

closure under, 88

edge removal, 35

empty hypergraph, 26

empty hypergraph language, 22

emTEX, 111

eNCE graph grammar, 56

ENF, see Edge Normal Form

Engelfriet, Joost, ii, 4, 56, 79, 81, 95, 96,

107, 111

equal modulo i/o, 22

existence of isomorphic copies, 52

external node, 22, 96

flipping, 44

closure under, 86

fold

in terms of split, 45

folding, 44

closure under, 86

full base set, 42

full decomposition, 33

generic class interpretation, 48

generic interpretation, 48

grammar, 7

context-free, 7

derivation-bounded, 8

linear, 7

ordinary, 12

right-linear, 7

typed, 11

underlying, 12

graph

abstract, 18

concrete, 18

ordinary, 20

string, 20

graph grammar, 1

context-free hypergraph . . . , 97

eNCE, 56

in disguise, 2, 96

using BC-hypergraphs, 97

graphical representation, 19

Greibach, S. A., 101

Habel, Annegret, 96, 106, 107

Herstein, I. N., 41

Heyker, Linda, 79, 81, 95, 96, 107

homomorphism

λ-free, 51

Hoogeboom, Hendrik-Jan, 111

hyperedge, 17

hypergraph, 2

abstract, see graph

BC, 96



134 Index

concrete, see graph

degree of, 18

empty, 26

graphical representation of, 19

identification-free, 18

isomorphic, 18

permutation, 38

product, 25

simple, 18

sum, 28

tentacle of, 19

unity, 26

hypergraph language, 22

empty, 22

singleton, 22

union on, 23

i/o

equal modulo, 22

i/o-hypergraph, 17

identification, 25

identification-free, 18

identifier, 6, 113

iff, 6

incidence function, 17, 104

incident, 18

input node, 2, 17

input type, 2, 9, 18

internal node, 22

internally typed, see correctly . . .

interpretation, 48

example of, 49

generic, 48

generic class, 48

limitations of, 53

power of, 80

string graph in terms of, 48

interpretation function, 48

interpreter, 1, 48

Edge Normal Form, 51

for L, 48

isomorphic copies

existence of, 52

Isomorphic Copies Theorem, 52

isomorphic hypergraph, 18

isomorphism, 18, 52

Kleene closure, 10, 27

closure under, 84

Knuth, Donald Ervin, 41

Kreb, Huibert, 111

Kreowski, Hans-Jörg, 96, 106

Kruyt, Erik, 111

labeling function, 17

lambda trick, 14, 58, 65, 99, 100, 103

Lamerigts, Tycho, 111

language

context-free, 7

derivation-bounded, 8

hypergraph, 22

linear, 7

ordinary, 11

right-linear, 7

typed, 10

underlying, 11

language over, 7

late night fortune cookie, 4

LaTEX, 111

layout

linear, 20

Leih, George, 56

lemma on cutwidth, 20

Lengauer, T., 56

LIN, 7, 114

LIN-CFHG, 98



Index 135

linear grammar, 7

linear language, 7

linear layout, 20

loop, 20

in a string graph, 21

vs sequential composition, 27

METAFONT, 111

mixed type, 22

n-sequence, see sequence

naming, 113

node, 17

external, 22, 96

input, 17

internal, 22

output, 17

normal form, see Edge Normal Form

Olofsen, Erik, 111

operator precedence, 31

ordinary alphabet, 6

ordinary grammar, 12

ordinary graph, 20

loop, 20

sequential composition on, 25

ordinary language, 11

ordinary set, 9

ordinary string, 10

ordinary symbol, 9

OUT(2DGSM), 79

OUT(DTWT), 81

output node, 2, 17

output type, 2, 9, 18

parallel composition, 3, 28

associativity of, 28

closure under, 86

commutativity of, 29

relation with sequential composition,

29

stacking railroad cars metaphor, 3

unity element of, 28

pascal, 8

permutation hypergraph, 38

philosophical sidenote, 11

postfix, 7

proper, 7

Power of Interpretation Theorem I, 79

Power of Interpretation Theorem II, 80

power set, 5

precedence of operators, 31

prefix, 7

proper, 7

problems

worthy of attack, iii, 4

product, 25

of ordinary graphs, 25

pseudo base set, see sequential . . .

quotation from

A. N. Onymous, 83

Abraham Lincoln, 1

Alfred North Whitehead, 117

Andrew S. Tanenbaum, 113

Donald Ervin Knuth, 47

Douglas Adams, 111

Edsger Wybe Dijkstra, 5

Harry S. Truman, 91

J. Finnigan, 25

Joost Engelfriet and George Leih, 57

Leonhard Euler, 17

Lewis Carroll, 33

Mark Twain, 109

Phil Collins, 95

The American Heritage Dictionary, 43



136 Index

railroad cars metaphor, 2

rank, 6

ranked alphabet, 6

REG, 7

regular, 7

regular expression, 92

reversal, 7, 87

right-linear grammar, 7

right-linear language, 7

Rijksuniversiteit te Leiden, 4

RLIN, 7, 114

Rosenfeld, A., 95

Rozenberg, Grzegorz, 107

Schneider, H. J., 95

n-sequence, see sequence

sequential composition, 1, 25

associativity of, 26

closure under, 83

commutativity of, 27

hooking railroad cars metaphor, 3

of ordinary graphs, 25

relation with parallel composition, 29

unity element of, 26

vs degree, 27

vs loops, 27

sequential decomposition, 33

sequential pseudo base set, 41

set

cardinality of, 5

ordinary, 9

sequence over a, 6

typed, 9

silly index entry, 136

simple hypergraph, 18

singleton class, 23

singleton hypergraph language, 22

source, 104

split

in terms of (back)fold, 45

split-up, 77

splitting, 44

closure under, 88

Stibbe, Tieleke, 112

STR(Int(RLIN)), 78

strictly over, 7

string, 7

ordinary, 10

typed, 10

string graph, 20

contains no loops, 21

degree of, 21

in term of interpretation, 48

substring, 7

sum, 28

symbol

ordinary, 9

typed, 9

tentacle, 19, 98, 107

TEX, 111

theorem

on bounded cutwidth, 54

on bounded degree, 54

on degree versus cutwidth, 54

on Edge Normal Form, 51

on isomorphic copies, 52

on the power of interpretation, 79

Tiggeloven, Carin, 111

tree

binary, 56, 102

λ-trick, see lambda trick

type, 9, 10, 18

input, 2, 9, 18

mixed, 22

output, 2, 9, 18



Index 137

uniform, 10, 18

type conditions, 8

type preservingness, 8

typed

correctly internally, 9

typed class interpretation, 48

typed grammar, 11

typed language, 10

concatenation, 10

Kleene closure, 10

union, 10

typed set, 9

typed string, 10

typed symbol, 9

typing, 2

example from pascal, 8

example from physics, 8

+{Un}, {Un}+

closure under, 85

underlying grammar, 12

underlying language, 11

uniform type, 10, 18

union, 10

closure under, 84

on hypergraph languages, 23

unity element

of parallel composition, 28

of sequential composition, 26

unity hypergraph, 26

variable name clash, 6

Vereijken, Frits, 111

Vereijken, Jan Joris, ii, 112

vertex, see node

wheel, 50

word, see string


