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Abstract. An operation of concatenation is defined for graphs. This
allows strings to be viewed as expressions denoting graphs, and string
languages to be interpreted as graph languages. For a class K of string
languages, Int(K) is the class of all graph languages that are interpre-
tations of languages from K . For the classes REG and LIN of regular
and linear context-free languages, respectively, Int(REG) = Int(LIN).
Int(REG) is the smallest class of graph languages containing all sin-
gletons and closed under union, concatenation and star (of graph lan-
guages). Int(REG) equals the class of graph languages generated by lin-
ear HR (= Hyperedge Replacement) grammars, and Int(K) is generated
by the corresponding K-controlled grammars. Two characterizations are
given of the largest class K ′ such that Int(K ′) = Int(K). For the class CF
of context-free languages, Int(CF) lies properly inbetween Int(REG) and
the class of graph languages generated by HR grammars. The concate-
nation operation on graphs combines nicely with the sum operation on
graphs. The class of context-free (or equational) graph languages, with
respect to these two operations, is the class of graph languages generated
by HR grammars.

1 Introduction

Context-free graph languages are generated by context-free graph grammars,
which are usually graph replacement systems. One of the most popular types of
context-free graph grammar is the Hyperedge Replacement System, or HR gram-
mar (see, e.g., [Hab, HabKre, HabKV]). A completely different way of generating
graphs is to select a number of graph operations, to generate a set of expressions
(built from these operations), and to interpret the expressions as graphs. The set
of expressions is generated by a classical context-free grammar generating strings
(or more precisely, by a regular tree grammar). This way of generating graphs
was introduced, for arbitrary objects rather than graphs, in [MezWri], where
the generated sets of objects are called equational. For graphs in particular, this
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generation method was first investigated in [BauCou]. It is shown in [BauCou]
that, for a particular collection of graph operations, this new graph generating
method is equivalent with the HR grammar. Other work on the generation of
graphs through graph expressions is in, e.g., [Cou2, CouER, Dre, Eng].

In this framework we investigate another, natural operation on graphs that
was introduced (for “planar nets”) in [Hot1] (and which is a simple variation of
the graph operations in [BauCou]). Due to its similarity to the concatenation of
strings, we call it concatenation of graphs. Together with the sum operation of
graphs (introduced for planar nets in [Hot1] and defined for graphs in [BauCou])
and all constant graphs, a collection of graph operations is obtained that is
simpler than the one in [BauCou], but also has the power of the HR grammar
(which is our first main result, proved in Section 4). Concatenation and sum
satisfy some nice basic properties, discussed in Section 3; in particular, all graphs
can be built from a small number of elementary graphs with the operations of
concatenation and sum. Thus, it suffices to use these elementary graphs in the
context-free grammars that generate graph expressions.

The basic laws that are satisfied by concatenation and sum of planar nets,
form the basis of the theory of x-categories developed in [Hot1] (also called
strict monoidal categories, see, e.g., [EhrKKK, Ben]). Free x-categories model
the sets of derivation graphs of Chomsky type 0 grammars (see [Hot2, Ben]).
Finite automata on such graphs are considered, e.g., in [BosDW]. The idea of
using concatenation and sum in graph grammars is from [HotKM], where “logic
topological nets” are generated by graph grammars (with parallel rewriting). Our
first main result (mentioned above) confirms the naturalness of these operations.

Our main interest in this paper is in the generation of graphs through graph
expressions that use concatenation only. Since graph concatenation is associative,
an expression that is built from constant graphs by concatenation, is essentially
the same as a string. This shows that we can use arbitrary context-free gram-
mars as graph grammars, by just interpreting the generated strings as graphs.
More generally, every class K of string languages determines a class Int(K) of
graph languages: Int(K) is the set of all graph languages h(L) where h is an
“interpretation” and L is a string language from K. An interpretation of an al-
phabet A is a mapping h that associates a graph h(a) with every symbol a; it is
extended to strings over A by h(a1 · · ·an) = h(a1) ◦ · · · ◦ h(an), where ◦ denotes
concatenation of graphs. Thus, symbols are interpreted as graphs, strings are
interpreted as graphs (by interpreting string concatenation as graph concate-
nation), and string languages are interpreted as graph languages. Note that an
interpretation looks like a semi-group homomorphism; however, it is not exactly
one, because concatenation on graphs is, in fact, a partial operation. More pre-
cisely, graphs are typed, and concatenation is defined only if the types “fit”. In
fact, as in [Hab], our graphs are equipped with a designated sequence of “begin
nodes” and a designated sequence of “end nodes” (generalizing the idea that
strings have a beginning and an end). A graph g1 can be concatenated with a
graph g2 only if the sequence of end nodes of g1 has the same length as the se-
quence of begin nodes of g2. Their concatenation g1◦g2 is obtained by identifying
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each end node of g1 with the corresponding begin node of g2 (just as strings are
concatenated by identifying the end of the first string with the beginning of the
second).

We investigate Int(K) for specific K (such as the class REG of regular
languages, the class CF of context-free languages, and the class LIN of linear
context-free languages), but also for arbitrary K (satisfying some mild closure
properties). In Section 5, after defining the notion of interpretation, we show
that the graph languages in Int(REG) are exactly those that can be denoted
by regular expressions, built from singleton graph languages with the opera-
tions of union, concatenation, and star (on graph languages). We also show that
Int(REG) = Int(LIN) and that it equals the class LIN-HR of graph languages
generated by linear HR grammars. This suggests that regularity and linearity are
the same for graph languages. The class Int(CF) contains, as expected, exactly
those graph languages that can be generated by expression generating context-
free grammars that do not use the sum operation. Thus, by our first main result,
it is included in the class of graph languages generated by HR grammars. The
inclusion is proper, due to the close connection between graph concatenation and
the pathwidth of graphs: every graph language in Int(K) is of bounded path-
width (and graph languages of unbounded pathwidth, such as the set of trees,
can be generated by HR grammars).

Generalizing the result that Int(REG) = LIN-HR, we show in Section 6 that
(under the rather weak assumption that K is closed under sequential machine
mappings) Int(K) is equal to LIN-HR(K), the class of graph languages that are
generated by linear HR grammars with a control language from K (with the
usual notion of control).

As observed above, Int(REG) = Int(LIN). In Section 7 we investigate the
question, for givenK andK′, whether or not Int(K′) = Int(K) (where we assume
that K and K′ are closed under sequential machine mappings). Trivially, for
every K there is a largest class K such that Int(K) = Int(K). We call this class
the extension of K, denoted Ext(K). Clearly, the question Int(K′) = Int(K)
is now reduced to the question Ext(K′) = Ext(K), which concerns classes of
string languages rather than graph languages. The main result of this section is
that Ext(K) consists exactly of all string languages that are in Int(K), coding
strings as graphs in the obvious way (viz., as edge-labeled chain graphs). Using
the characterization in Section 6, and generalizing a result concerning the string
generating power of linear HR grammars from [EngHey], we show that Ext(K) =
2DGSM(K), the class of all languages that are images of languages from K under
2-way deterministic gsm mappings. Thus, Int(K′) = Int(K) iff 2DGSM(K′) =
2DGSM(K), a purely formal language-theoretic question. By the well-known
result that 2DGSM(REG) is properly included in 2DGSM(CF), we conclude
that Int(REG) is properly included in Int(CF).

A preliminary version of this paper was presented at the 5th International
Workshop on Graph Grammars and their Application to Computer Science
[EngVer]. The work is based on the Master’s Thesis of the second author [Ver].
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2 Preliminaries

2.1 Strings

We assume the reader to be familiar with formal language theory (see, e.g.,
[Ber, HopUll, Sal]). Here we just recall some of the concepts to be used.

N = {0, 1, 2, . . .} denotes the set of natural numbers. For a set V , V ∗ de-
notes the set of all finite sequences (or strings) of elements of V . A sequence
〈v1, v2, . . . , vn〉 ∈ V ∗, with vi ∈ V , is also written as v1v2 · · ·vn (as λ if n = 0).
The length of a string w ∈ V ∗ is denoted |w|, and, for 1 ≤ i ≤ |w|, its ith
element is denoted w(i). Thus, if w = v1 · · ·vn, then |w| = n and w(i) = vi.
Concatenation of strings is defined in the usual way.

A context-free grammar is a tuple G = (N, T, P, S) where N is the nonter-
minal alphabet, T is the terminal alphabet (disjoint with N), P is the set of
productions (of the form X → α, with α ∈ (N ∪ T )∗), and S is the initial non-
terminal. The language L(G) ⊆ T ∗ generated by G is defined in the usual way.
A context-free grammar is linear if there is at most one nonterminal occurrence
in each right-hand side of a production, and it is right-linear if each production
is of the form X → aY or X → a, with X, Y ∈ N and a ∈ T . The class of lan-
guages generated by all (all linear) context-free grammars is denoted CF (LIN,
respectively). By REG we denote the class of regular languages. Note that the
right-linear context-free grammars generate the class of λ-free regular languages
(i.e., those regular languages that do not contain λ).

2.2 Graphs and graph replacement

We consider the multi-pointed, directed, edge-labeled hypergraphs of [Hab]. Such
a hypergraph consists of a set of nodes and a set of (hyper)edges, just as an
ordinary graph, except that an edge may have any number of sources and any
number of targets, rather than just one source and one target. Each edge is
labeled with a symbol from a “doubly-ranked” alphabet, in such a way that
the first (second) rank of its label equals the number of its sources (targets,
respectively). Finally, every hypergraph is multi-pointed in the sense that it
has a designated sequence of “begin nodes”, and a designated sequence of “end
nodes”; these can be used conveniently for gluing hypergraphs to each other.

Formally, a typed (or doubly ranked) alphabet is an alphabet Σ together with
a mapping type : Σ → N × N. A multi-pointed hypergraph over Σ is a tuple
g = (V, E, s, t, l, begin, end), where V is the finite set of nodes, E is the finite set
of (hyper)edges, s : E → V ∗ is the source function, t : E → V ∗ is the target
function, l : E → Σ is the labeling function such that type(l(e)) = (|s(e)|, |t(e)|)
for every e ∈ E, begin ∈ V ∗ is the sequence of begin nodes, and end ∈ V ∗ is the
sequence of end nodes.

For a given multi-pointed hypergraph g, its components will also be denoted
by Vg , Eg, sg, tg, lg , begin(g), and end(g). If |begin(g)| = m and |end(g)| = n,
then g is said to be of type (m, n) and we write type(g) = (m, n). Similarly,
for an edge e of g, we write type(e) to denote type(l(e)); thus, by the above
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requirement, if type(e) = (m, n), then e has m sources and n targets. If a multi-
pointed hypergraph is of type (0, 0) and all its edges are of type (1, 1), then it is
an ordinary directed graph (with labeled edges).

For a typed symbol σ, with type(σ) = (m, n), we denote by atom(σ) the
multi-pointed hypergraph g of type (m, n) such that Vg = {x1, . . . , xm, y1, . . . , yn},
Eg = {e} with l(e) = σ, and begin(g) = s(e) = 〈x1, . . . , xm〉, and end(g) =
t(e) = 〈y1, . . . , yn〉. A multi-pointed hypergraph of the form atom(σ) will be
called an atom (it is called a handle in [Hab]).

Two multi-pointed hypergraphs g and h are disjoint if Vg ∩ Vh = ∅ and
Eg ∩ Eh = ∅.

From now on we will just say graph instead of multi-pointed hypergraph. As
usual we consider both concrete and abstract graphs, where an abstract graph is
an equivalence class of isomorphic concrete graphs. The isomorphisms between
graphs g and h are the usual ones, which, additionally, should map begin(g) to
begin(h), and end(g) to end(h). In particular, isomorphic graphs have the same
type. We are only interested in abstract graphs; concrete graphs are just used
as representatives of abstract graphs. The set of abstract graphs over a typed
alphabet Σ will be denoted GR(Σ), and GR denotes the union of all GR(Σ)
(where Σ is taken from some fixed, infinite set of symbols). A (typed) graph
language is a subset L of GR(Σ), for some Σ, such that all graphs in L have the
same type (m, n), also called the type of L, and denoted by type(L) = (m, n).

A basic operation on graphs is the substitution of a graph for an edge (see
[Hab, BauCou]). To define it formally, it is convenient to use an operation of
node identification (or “gluing”), as follows.

Let g be a graph, and let R ⊆ Vg × Vg. Intuitively, we wish to identify nodes
x and y, for every pair (x, y) ∈ R. For x ∈ Vg , let [x]R denote the equivalence
class of x with respect to the smallest equivalence relation on Vg containing R.
For V ⊆ Vg , let V/R = {[x]R | x ∈ V }. For a sequence x = 〈x1, . . . , xn〉 ∈ V ∗

g

with xi ∈ Vg, let [x]R = 〈[x1]R, . . . , [xn]R〉. Then we define the graph g/R by
g/R = (Vg/R, Eg, s, t, lg, [begin]R, [end]R) such that s(e) = [sg(e)]R and t(e) =
[tg(e)]R for every e ∈ Eg.

Substitution of a graph for an edge is now defined as follows. Let g be a graph,
let e be an edge of g, and let h be a graph such that type(h) = type(e) = (m, n).
We assume that g and h are disjoint (otherwise an isomorphic copy of h should
be taken). Let g′ be the graph that is obtained from g by removing e and adding
h (disjointly), i.e., g′ = (Vg ∪ Vh, (Eg − {e}) ∪Eh, s, t, l, begin(g), end(g)), where
s(e) = sg(e) for e ∈ Eg −{e} and s(e) = sh(e) for e ∈ Eh, and similarly for t and
l. Note that g′ has the begin and end nodes of g. Then the substitution of h for e in
g, denoted by g[e/h], is the graph g′/R where R = {(sg(e)(i), begin(h)(i)) | 1 ≤
i ≤ m} ∪ {(tg(e)(i), end(h)(i)) | 1 ≤ i ≤ n}. Thus, intuitively, after removing e
and adding h, the ith source of e is identified with the ith begin node of h, and the
ith target of e is identified with the ith end node of h. The notion of substitution
defined here is not precisely the one in [Hab], but it is (the appropriate extension
to the doubly ranked case of) the one in [BauCou]; however, they are equivalent
from the point of view of graph generation by hyperedge replacement grammars.
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In a substitution g[e/h], h can be taken as an abstract graph (in the sense that
if h and h′ are isomorphic, then so are g[e/h] and g[e/h′]); but g is necessarily
concrete, because its concrete edge e is involved. To turn substitution into an
operation on abstract graphs, we substitute graphs for all edges of g and let the
graph h to be substituted for edge e be determined by the label of e. This leads
us to a notion of substitution that generalizes the notion of homomorphism of
strings (in formal language theory), and that we will call “replacement” (of edges
by graphs).

Let Σ be a typed alphabet. A replacement is a mapping φ : Σ → GR such
that type(φ(σ)) = type(σ) for every σ ∈ Σ; it is extended to a mapping from
GR(Σ) to GR by defining, for g ∈ GR(Σ), φ(g) = g[e1/φ(l(e1))] · · · [ek/φ(l(ek))],
where Eg = {e1, . . . , ek}. Thus, every edge e of g with label l(e) = σ is replaced
by the graph φ(σ). It is well known that this definition does not depend on the
order e1, . . . , ek in which the edges are replaced (because substitution is conflu-
ent, cf. [Cou1]). It should also be clear that every replacement is an operation
on abstract graphs: if g and g′ are isomorphic, then so are φ(g) and φ(g′).

We denote the class of all replacements by Repl, and, for a class K of graph
languages, we let Repl(K) = {φ(L) | φ ∈ Repl, L ∈ K}.

Another basic property of substitution is its associativity (see [Cou1]). In our
present formulation it means that the composition of two replacements is again
a replacement (as one would expect from a generalization of string homomor-
phism).

Proposition 1. Repl is closed under composition.

Proof. It can be shown, based on the associativity of substitution, that, for a re-
placement φ, φ(g[e1/h1] · · · [ek/hk]) = g[e1/φ(h1)] · · · [ek/φ(hk)], where Eg =
{e1, . . . , ek}. Now let Σ1 and Σ2 be two typed alphabets. Let φ1 : Σ1 →
GR(Σ2) and φ2 : Σ2 → GR be two replacements. Define the replacement
φ : Σ1 → GR by: φ(σ) = φ2(φ1(σ)) for every σ ∈ Σ1. Then, for a graph
g with Eg = {e1, . . . , ek}, φ2(φ1(g)) = φ2(g[e1/φ1(l(e1))] · · · [ek/φ1(l(ek))]) =
g[e1/φ2(φ1(l(e1)))] · · · [ek/φ2(φ1(l(ek)))] = g[e1/φ(l(e1))] · · · [ek/φ(l(ek))] = φ(g).
This shows that φ = φ2 ◦ φ1. ut

A useful elementary property of replacements is that, for every replacement
φ : Σ → GR and every σ ∈ Σ, φ(atom(σ)) = φ(σ). Also, if φ(σ) = atom(σ) for
every σ ∈ Σ, then φ(g) = g for every g ∈ GR(Σ).

Besides replacement operations, there are two other, simpler operations on
(abstract) graphs that will be useful. They only change the begin and end
nodes of a graph. Let g be a graph. The fold of g, denoted fold(g), is the
same as g, except that begin(fold(g)) = λ and end(fold(g)) = begin(g) · end(g),
where · denotes concatenation of strings, as usual. The backfold of g, denoted
backfold(g), is the same as g, except that begin(backfold(g)) = begin(g) · end(g)
and end(backfold(g)) = λ.
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2.3 Hyperedge replacement grammars

Hyperedge replacement grammars (or HR grammars) are context-free graph
grammars that substitute graphs for edges. An HR grammar is a tuple G =
(N, T, P, S) where N is a typed alphabet of nonterminals, T is a typed alphabet
of terminals (disjoint with N), P is a finite set of productions, and S ∈ N is the
initial nonterminal. Every production in P is of the form X → h with X ∈ N ,
h ∈ GR(N ∪ T ), and type(X) = type(h); moreover, we assume (without loss of
generality) that no two edges of h are labeled by the same nonterminal.

Application of a production p = X → h to a graph is defined as follows. Let
g ∈ GR(N ∪ T ), and let e ∈ Eg. Then p is applicable to e if lg(e) = X, and the
result of the application is the graph g[e/h]. We write g ⇒p g

′, or just g ⇒ g′, if
g′ is the result of applying p to e of g, i.e., if g′ is (isomorphic to) g[e/h]. As usual,
⇒∗ denotes the transitive reflexive closure of ⇒. The graph language generated
by G is L(G) = {g ∈ GR(T ) | atom(S) ⇒∗ g}. Note that type(L(G)) = type(S).

We denote by HR the class of graph languages generated by HR grammars.
An HR grammar is linear if there is at most one nonterminal edge in each right-
hand side of a production. We denote by LIN-HR the class of graph languages
generated by linear HR grammars.

A fundamental property of HR grammars is formulated in the following
“context-freeness lemma” (cf. Section II.2 of [Hab]). As shown in Lemma 2.14
of [Cou1], it is based on the associativity of substitution. Due to the above as-
sumption that a nonterminal occurs at most once in the right-hand side of a
production, it can be stated in terms of replacements, as follows.

Proposition2. Let G = (N, T, P, S) be an HR grammar. Let X → h be in
P , and let g ∈ GR(T ). Let lab(h) = {lh(e) | e ∈ Eh}. Then h ⇒∗ g if and
only if there exists a replacement φ : lab(h) → GR(T ) such that φ(h) = g and
atom(σ) ⇒∗ φ(σ) for every σ ∈ lab(h). Moreover, the length of the derivation
h ⇒∗ g equals the sum of the lengths of all derivations atom(σ) ⇒∗ φ(σ).

3 Concatenation and Sum

In this section we define the graph operation of concatenation, and investigate
some of its basic properties. In particular we show that it combines well with
the sum operation on graphs. These operations work on abstract graphs. Intu-
itively, concatenation is sequential composition of graphs, and sum is parallel
composition of graphs.

If g and h are graphs with type(g) = (k,m) and type(h) = (m, n), then their
concatenation g ◦ h is the graph obtained by first taking the disjoint union of g
and h, and then identifying the ith end node of g with the ith begin node of h, for
every i ∈ {1, . . . , m}; moreover, begin(g ◦h) = begin(g) and end(g ◦h) = end(h),
and so type(g ◦ h) = (k, n). Note that the concatenation of g and h is defined
only when |end(g)| = |begin(h)|. Formally, the definition is as follows (where we
use node identification as defined in Section 2.2).
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Definition3. Let g and h be graphs such that |end(g)| = |begin(h)|. We as-
sume that g and h are disjoint (otherwise an isomorphic copy of g or h should
be taken). The concatenation g ◦ h of g and h is the graph (g&h)/R where
g&h = (Vg ∪ Vh, Eg ∪ Eh, sg ∪ sh, tg ∪ th, lg ∪ lh, begin(g), end(h)) and R =
{(end(g)(i), begin(h)(i)) | 1 ≤ i ≤ |end(g)|}. ut
The sum g ⊕ h of arbitrary graphs g and h is their disjoint union, with their
sequences of begin nodes concatenated, and similarly for their end nodes. More
formally, assuming that g and h are disjoint, g ⊕ h = (Vg ∪ Vh, Eg ∪ Eh, sg ∪
sh, tg ∪ th, lg ∪ lh, begin(g) · begin(h), end(g) · end(h)).

The sum operation is taken from [BauCou] (where only graphs without end
nodes are considered). All other operations in [BauCou] (viz. source redefinitions
and source fusions) are unary operations, each of which is left-concatenation with
a specific fixed graph.
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Fig. 1. Two graphs, their concatenation, and their sum.

Figure 1 shows two (ordinary) abstract graphs, g of type (2, 3) and h of type
(3, 1), with their concatenation g ◦ h of type (2, 1) and their sum g ⊕ h of type
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(5, 4). The graphs are drawn in the usual way; the ith begin node is indicated
by bi, and the ith end node by ei.

These two graph operations have a number of simple properties. We stress
again that the following lemmas are all about abstract graphs; in particular,
the equality sign refers to the equality of abstract graphs (which is isomorphism
of concrete graphs). First of all we show the basic fact that replacements are
homomorphisms with respect to concatenation (just as string homomorphisms,
of which they are a generalization) and with respect to sum.

Lemma4. Let φ : Σ → GR be a replacement, and let g, h ∈ GR(Σ).
(1) if |end(g)| = |begin(h)|, then φ(g ◦ h) = φ(g) ◦ φ(h), and
(2) φ(g ⊕ h) = φ(g) ⊕ φ(h).

Proof. (1) It is easy to verify this equality in the case that both g and h are
atoms (for the definition of an atom, see Section 2.2). The general case is then
proved as follows. Let σ and τ be two symbols with the same type as g and h,
respectively. Let ψ : {σ, τ} → GR(Σ) be the replacement with ψ(σ) = g and
ψ(τ ) = h. Then, by the above special case, ψ(atom(σ)◦atom(τ )) = ψ(atom(σ))◦
ψ(atom(τ )) = ψ(σ) ◦ ψ(τ ) = g ◦ h. Hence φ(g ◦ h) = φ(ψ(atom(σ) ◦ atom(τ ))).
By Proposition 1, φ◦ψ is a replacement. Hence, again by the above special case,
φ(g ◦ h) = φ(ψ(atom(σ)) ◦ φ(ψ(atom(τ )) = φ(ψ(σ)) ◦ φ(ψ(τ )) = φ(g) ◦ φ(h).

The proof of (2) is analogous. ut
This lemma allows us to prove laws about ◦ and ⊕ by proving them for atoms
only (as, in fact, we already did in the proof of Lemma 4). The next lemma
summarizes the main basic properties of ◦ and ⊕.

Definition5. For every n ∈ N the identity idn of type (n, n) is the discrete
graph with nodes x1, . . . , xn and begin(idn) = end(idn) = x1 · · ·xn. Thus, idn

is the (abstract) graph ({x1, . . . , xn}, ∅, ∅, ∅, ∅, 〈x1, . . . , xn〉, 〈x1, . . . , xn〉). In par-
ticular, id0 is the empty graph. ut
Lemma6.
(1) Concatenation is associative, i.e., if |end(g1)| = |begin(g2)| and |end(g2)| =
|begin(g3)|, then (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).
(2) The idn are identities with respect to concatenation, i.e., g ◦ idn = g and
idn ◦ h = h for every g with |end(g)| = n and h with |begin(h)| = n.
(3) Sum is associative with unity id0, i.e., (g1 ⊕ g2) ⊕ g3 = g1 ⊕ (g2 ⊕ g3) and
g ⊕ id0 = id0 ⊕ g = g.
(4) For every m, n ∈ N, idm+n = idm ⊕ idn.
(5) Concatenation and sum satisfy the law of strict monoidality:
if |end(g)| = |begin(g′)| and |end(h)| = |begin(h′)|, then

(g ⊕ h) ◦ (g′ ⊕ h′) = (g ◦ g′) ⊕ (h ◦ h′).

Proof. (1) It is easy to verify that concatenation is associative for atoms. Now
let σi be a symbol with the same type as gi, and let φ be the replacement
with φ(σi) = gi. Then φ((atom(σ1) ◦ atom(σ2)) ◦ atom(σ3)) = φ(atom(σ1) ◦
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(atom(σ2)◦atom(σ3)), and, by Lemma 4, φ((atom(σ1)◦atom(σ2))◦atom(σ3)) =
(φ(atom(σ1)) ◦ φ(atom(σ2))) ◦ φ(atom(σ3)) = (g1 ◦ g2) ◦ g3 and φ(atom(σ1) ◦
(atom(σ2) ◦ atom(σ3)) = φ(atom(σ1)) ◦ (φ(atom(σ2)) ◦φ(atom(σ3))) = g1 ◦ (g2 ◦
g3).

Properties (2), (3), and (5) can be shown in exactly the same way: by veri-
fying them for atoms, and applying Lemma 4. Note that φ(idn) = idn for every
replacement φ. Property (4) is obvious. ut
Lemma 6 means that GR is a strict monoidal category (or x-category), see, e.g.,
[EhrKKK, Hot1, Ben]. The objects of this category are the natural numbers in
N, and each (abstract) graph of type (m, n) is a morphism from m to n in this
category. Concatenation is the composition of morphisms (but is usually written
h◦g rather than g◦h), and the idn are the identity morphisms. The set of objects
and the set of morphisms form a monoid with respect to + and ⊕, respectively
(where + is ordinary addition for natural numbers, with monoid identity 0).

We now show that all graphs can be built from a small number of elementary
graphs with the operations of concatenation and sum.

Form, n ∈ N, let Im,n be the graph of type (m, n) with one node x, no edges,
begin(Im,n) = xm = 〈x, . . . , x〉 (m times), and end(Im,n) = xn = 〈x, . . . , x〉 (n
times). Note that I1,1 = id1. Let π12 be the graph of type (2, 2) with two nodes x
and y, no edges, begin(π12) = xy, and end(π12) = yx. For every typed alphabet
Σ we define the set of elementary graphs over Σ by

EL(Σ) = {atom(σ) | σ ∈ Σ} ∪ {I0,1, I1,0, I1,2, I2,1, π12, id0}.
Theorem7. For every typed alphabet Σ, GR(Σ) is the smallest class of graphs
containing EL(Σ) and closed under ◦ and ⊕.

Proof. We have to show that every graph in GR(Σ) can be written as an ex-
pression with the operators ◦ and ⊕, and constants from EL(Σ). We do this by
reducing the problem to smaller and smaller sets of graphs. First we reduce it
to the class of discrete graphs, i.e., graphs without edges.

Let g ∈ GR(Σ), and let e be an edge of g with lg(e) = σ. We will re-
move e from g, and express g in terms of the so obtained graph g′ that has
one edge less than g (and in terms of discrete graphs). By repeating this pro-
cedure, we can express g in terms of discrete graphs only. Let g′ = (Vg, Eg −
{e}, s, t, l, begin(g), end(g)·sg(e)·tg(e)) where s, t, l are the restrictions of sg, tg, lg
to Eg − {e}, respectively. Thus, g′ is obtained from g by removing e; moreover,
in order to be able to reconstruct g from g′, the sources and targets of e are
turned into end nodes. It is now easy to verify that

g = g′ ◦ (idn ⊕ backfold(atom(σ)))

where n = |end(g)|, and the backfold operation is the one defined at the end of
Section 2.2. Intuitively, the end nodes of atom(σ) are turned into begin nodes
(by the backfold operation), and then they are glued to the new end nodes of
g′. It is easy to prove that, for every graph h,

backfold(h) = (h ⊕ idq) ◦ backfold(idq)
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where q = |end(h)|. Consequently,

g = g′ ◦ (idn ⊕ (atom(σ) ⊕ idq) ◦ backfold(idq))

where q = |t(e)|. This shows that g can be expressed in terms of g′ and discrete
graphs.

It remains to find an expression for every discrete graph. To this aim we define
the following special permutation graphs. Let k ≥ 1 and let α be a permutation of
{1, . . . , k}. Then πα is the discrete graph with nodes {x1, . . . , xk}, begin(πα) =
x1 · · ·xk, and end(πα) = xα(1) · · ·xα(k). Note that π12 is the permutation graph
πα with α(1) = 2 and α(2) = 1. We need some simple properties of permutation
graphs. In what follows we write [n] for {1, . . . , n}, for every n ∈ N. First, if
α and β are permutations of [k], then πα ◦ πβ = πα◦β, and if id is the identity
permutation of [k], then πid = idk. Second, let g be a graph of type (m, n)
with Vg = {x1, . . . , xk}, begin(g) = xγ(1) · · ·xγ(m), and end(g) = xδ(1) · · ·xδ(n),
where γ : [m] → [k] and δ : [n] → [k]. If α is a permutation of [n], then
g ◦ πα is the same graph as g except that end(g ◦ πα) = xδ(α(1)) · · ·xδ(α(n)).
This means that g ◦πα is obtained from g by applying permutation α to end(g).
Similarly, if α is a permutation of [m], then πα ◦ g is the same graph as g except
that begin(πα ◦ g) = xγ(α−1(1)) · · ·xγ(α−1(m)). Thus, to obtain πα ◦ g from g,
permutation α−1 is applied to begin(g).

Now let g be an arbitrary discrete graph, with type(g) = (m, n), Vg =
{x1, . . . , xk}, begin(g) = xγ(1) · · ·xγ(m), and end(g) = xδ(1) · · ·xδ(n), where
γ : [m] → [k] and δ : [n] → [k]. For every 1 ≤ i ≤ k, let pi be the number of occur-
rences of xi in begin(g), and let qi be the number of occurrences of xi in end(g).
Let α be any permutation of [m] such that xγ(α(1)) · · ·xγ(α(m)) = xp1

1 · · ·xpk

k ,
and let β be any permutation of [n] such that xδ(β(1)) · · ·xδ(β(n)) = xq1

1 · · ·xqk

k .
Thus, intuitively, α and β order begin(g) and end(g), respectively. Clearly, by the
above properties of permutation graphs, the graph πα−1 ◦ g ◦ πβ has the same
nodes as g, has begin nodes xp1

1 · · ·xpk

k , and has end nodes xq1
1 · · ·xqk

k . Hence
πα−1 ◦ g ◦ πβ = Ip1,q1 ⊕ · · ·⊕ Ipk ,qk . By multiplying with πα to the left, and with
πβ−1 to the right, we obtain that g = πα ◦ (Ip1,q1 ⊕ · · · ⊕ Ipk,qk ) ◦ πβ−1 .

It now remains to find expressions for all graphs Im,n and all graphs πα. The
following equations show how to find an expression for Im,n:

I1,1 = I1,2 ◦ I2,1
Im+1,1 = (Im,1 ⊕ I1,1) ◦ I2,1 for m ≥ 2
I1,n+1 = I1,2 ◦ (I1,n ⊕ I1,1) for n ≥ 2
Im,n = Im,1 ◦ I1,n for m, n ∈ N.

Clearly, the identity graphs can also be expressed: for every n ∈ N, idn =
I1,1 ⊕· · ·⊕I1,1 (n times). To find an expression for πα, where α is a permutation
of [k], we note that either α is the identity on [k], in which case πα = idk,
or α is the composition of interchanging permutations, where an interchanging
permutation αi interchanges i and i+ 1 and leaves the other numbers as they
are (with 1 ≤ i ≤ k − 1). In the latter case, by the property of permutation
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graphs mentioned above, πα is the concatenation of graphs παi. Now, clearly,
παi = idi−1 ⊕ π12 ⊕ idk−i−1.

This shows that all graphs in GR(Σ) can be expressed in terms of ◦, ⊕, and
the constants in EL(Σ). ut

Theorem 7 is analogous to Proposition 3.6 of [BauCou]. It is open whether there
exists a complete set of equations (including those of Lemma 6) for the oper-
ations in {◦,⊕} ∪ EL(Σ). This would give a result analogous to Theorem 3.10
of [BauCou]. It would characterize GR(Σ) as the free x-category satisfying the
equations; such results are shown in [Hot1, Cla] (where I1,0, I1,2, π12 are denoted
U,D, V , respectively).

It is not difficult to show that the set EL(Σ) is minimal, in the sense that
if one removes one element from it, then Theorem 7 does not hold any more.
Also, it should be clear that the concatenation operation cannot be dropped
from Theorem 7, even if one would replace EL(Σ) by another finite set of graphs
(because, with sum, only graphs with very small connected components could be
built). To show that the sum operation cannot be dropped from Theorem 7, we
now discuss the close relationship between the concatenation operation and the
notion of pathwidth (introduced in [RobSey]; see also, e.g., [Bod, Klo, EllST]).
In the following definition we (slightly) generalize the notion of pathwidth, to
(hyper)graphs with begin and end nodes (cf. [Cou3]).

Definition8. A path decomposition of a graph g is a sequence (V1, . . . , Vn),
n ≥ 1, of subsets of Vg such that
(1)

⋃n
i=1 Vi = Vg ,

(2) for every e ∈ Eg there is an i with s(e) ∈ V ∗
i and t(e) ∈ V ∗

i ,
(3) if i < k < j, then Vi ∩ Vj ⊆ Vk, and
(4) begin(g) ∈ V ∗

1 and end(g) ∈ V ∗
n .

The width of (V1, . . . , Vn) is max{#Vi | 1 ≤ i ≤ n} − 1, where #Vi is the
cardinality of Vi.

The pathwidth of a graph g, denoted pathwidth(g), is the minimal width of
a path decomposition of g. ut
The relationship between concatenation and pathwidth is expressed in the fol-
lowing result, which (in view of Theorem 23) is essentially due to [Lau] (see also
[Cou3]).

Theorem9. Let k ≥ 1. For every graph g, pathwidth(g) ≤ k if and only if
there exist graphs g1, . . . , gn, n ≥ 1, such that g = g1 ◦ · · · ◦ gn and #Vgi ≤ k+ 1
for every 1 ≤ i ≤ n.

Proof. We prove by induction on n that g has a path decomposition (V1, . . . , Vn)
of width ≤ k if and only if there exist graphs g1, . . . , gn with #Vgi ≤ k + 1 such
that g = g1 ◦ · · · ◦ gn. For n = 1 this is obvious.

Assume that g has a path decomposition (V1, . . . , Vn, Vn+1) with #Vi ≤ k+1.
By condition (3) of Definition 8, (V1 ∪· · ·∪Vn)∩Vn+1 = Vn ∩Vn+1. Let g′ be the
subgraph of g induced by V1∪· · ·∪Vn, such that begin(g′) = begin(g) and end(g)
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consists of the nodes in Vn ∩ Vn+1, in some order. Let gn+1 be the subgraph of g
induced by Vn+1 with begin(gn+1) = end(g′) and end(gn+1) = end(g). Clearly,
g = g′ ◦ gn+1. Also, (V1, . . . , Vn) is a path decomposition of g′, and hence, by
induction g′ = g1 ◦ · · · ◦ gn with #Vgi ≤ k + 1, and so g = g1 ◦ · · · ◦ gn ◦ gn+1.

Assume now that g = g1◦· · ·◦gn◦gn+1 with #Vgi ≤ k+1. Let g′ = g1◦· · ·◦gn.
Hence g = g′ ◦ gn+1. We may assume that g′ and gn+1 are disjoint, and that
g = (g′&gn+1)/R, as in Definition 3. By induction, g′ has a path decomposition
(V1, . . . , Vn) with #Vi ≤ k + 1. Let Vn+1 = Vgn+1 . It should now be clear that
the sequence (V1/R, . . . , Vn/R, Vn+1/R) is a path decomposition of g. ut
Since there are graphs of arbitrary large pathwidth (such as the complete graph
on n nodes, which has pathwidth n − 1), this theorem implies that, for any
typed alphabet Σ, there is no finite subset E of GR(Σ) such that GR(Σ) is the
smallest set of graphs containing E and closed under concatenation (because the
pathwidth of all graphs in this smallest set is at most equal to the maximal size
of the graphs in E).

4 Context-free graph grammars

In this section we use context-free grammars to generate graph expressions that
are built from arbitrary constant graphs with the graph operators ◦ and ⊕.
Taking the values of these expressions in GR, each such context-free grammar
generates a graph language.

Let CS be the set of operators {◦,⊕} ∪ {cg | g ∈ GR}, where ◦ and ⊕ denote
concatenation and sum of graphs, as usual, and cg is a constant standing for the
graph g.

Expressions over CS are defined in the usual way. Let Σ be a typed alphabet,
disjoint with CS (where, intuitively, each σ ∈ Σ is a variable that ranges over
all graphs with the same type as σ). A (well-formed) expression over CS and Σ
is a string over CS ∪ Σ ∪ {(, )} defined recursively as follows, together with its
type: (1) every σ ∈ Σ is an expression, with the same type, (2) every constant
cg is an expression, with type(cg) = type(g), (3) if e and f are expressions
with type(e) = (k,m) and type(f) = (m, n), then (e ◦ f) is an expression with
type(e◦f) = (k, n), and (3) if e and f are expressions with type(e) = (m, n) and
type(f) = (p, q), then (e⊕ f) is an expression with type(e⊕ f) = (m+ p, n+ q).
An ‘expression over CS’ is defined in the same way, without clause (1). If e
is an expression over CS, then its value, denoted by val(e), is a graph in GR,
defined recursively in the usual way: val(cg) = g, val(e◦ f) = val(e)◦val(f), and
val(e⊕ f) = val(e) ⊕ val(f).

Definition10. A context-free graph grammar over CS is an ordinary context-
free grammar G = (N, T, P, S), see Section 2.1, such that N is a typed alphabet,
T is a finite subset of CS ∪ {(, )}, and the right-hand side of each production in
P is an expression over CS and N , of the same type as the left-hand side. ut
Obviously, the context-free language L(G) generated by G is a set of expressions
over CS (and it is also a regular tree language, see [GécSte]). The graph language
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generated by G is val(L(G)) = {val(e) | e ∈ L(G)}. Note that type(val(L(G))) =
type(S). By Val(CFG(CS)) we denote the class of all graph languages generated
by context-free graph grammars over CS. By the results of [MezWri], it is the
class of equational subsets of the algebra of graphs with the operations ◦ and ⊕.

It should be clear that, due to Theorem 7, we could restrict CS to contain
only elementary constants, i.e., constants cg with g ∈ EL(Σ) for some Σ. This
would give the same class Val(CFG(CS)).
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As an example, consider the context-free graph grammar Gb that has one
nonterminal X, with type(X) = (1, 0), and two productions X → cg ◦ (X ⊕X)
and X → cg′ , where g is the triangle of type (1, 2) with V = {x, y, z}, E =
{(x, y), (x, z), (y, z)}, s(u, v) = u, t(u, v) = v, and l(u, v) = σ for every edge
(u, v), begin(g) = x and end(g) = yz, and g′ is the graph of type (1, 0) with one
node x, no edges, begin(g′) = x and end(g′) = λ. The graphs g and g′ are shown
in Fig. 2. The expression

e = cg ◦ (cg ◦ (cg′ ⊕ cg ◦ (cg′ ⊕ cg′ )) ⊕ cg ◦ (cg′ ⊕ cg′))

is in L(G); the graph val(e) is shown in Fig. 3 (without the edge labels σ). Clearly,
val(L(Gb)) is the set of all graphs of type (1, 0) that are obtained from (directed,
rooted) binary trees by connecting each pair of children by an additional edge;
the sequence of begin nodes consists of the root of the binary tree. This graph
language is therefore in Val(CFG(CS)).

The main result of this section is that generating graph languages in the
above way is equivalent to generating them with HR grammars (see Section 2.3).
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Thus, the HR grammars generate exactly the equational subsets of the algebra
of graphs with the operations ◦ and ⊕. As observed in the introduction, this is
a simple variant of Theorem 4.11 of [BauCou] (and the proof is analogous).

Theorem11. Val(CFG(CS)) = HR.

Proof. Similar to the restriction on productions of HR grammars, we can assume
without loss of generality that no nonterminal occurs more than once in the
right-hand side of a production of a context-free graph grammar. Moreover, we
can also assume that, in a context-free graph grammar, the nonterminals do not
occur as edge labels in the constants cg that are used in the right-hand sides of
its productions.

To turn a context-free graph grammar into an HR grammar, we extend the
definition of the ‘val’ function to expressions over CS and N . This is simply
done by extending the recursive definition of ‘val’ with the requirement that
val(X) = atom(X) for every X ∈ N .

Let G be a context-free graph grammar and G′ an HR grammar. We say that
G and G′ are related if they have the same typed alphabet of nonterminals, with
the same initial nonterminal, and P ′ = {X → val(t) | X → t ∈ P }, where P is
the set of productions of G and P ′ the one of G′. Trivially, for every context-
free graph grammar there is a related HR grammar. The other way around, it
suffices to show that for every graph h ∈ GR(N ∪ T ), where N and T are the
terminal and nonterminal alphabet of the HR grammar, respectively, there is
an expression t over CS and N such that val(t) = h. By Theorem 7 there is
an expression e over CS such that val(e) = h, and for every constant cg that
occurs in e, g ∈ EL(N ∪ T ). Let t be the expression that is obtained from e
by changing every subexpression atom(X) into X, for every X ∈ N . Obviously
t is the required expression. Hence, for every HR grammar there is a related
context-free graph grammar.

It now suffices to show that related grammars G and G′ generate the same
graph language. To this aim we show that for every nonterminal X and every
terminal graph g, atom(X) ⇒∗ g in G′ if and only if there exists an expression e
over CS such that X ⇒∗ e in G and val(e) = g. This can be proved by induction
on the length of the derivations, as follows.

Consider a derivation X ⇒ t ⇒∗ e in G. Let t contain the nonterminals
X1, . . . , Xn (and recall that each nonterminal Xi occurs exactly once in t). Then
there exist expressions ei such that Xi ⇒∗ ei and e = ψ(t) where ψ is the string
homomorphism with ψ(Xi) = ei and the identity otherwise. Now let φ be the
replacement with φ(Xi) = val(ei) and φ(σ) = atom(σ) for all terminal symbols.

It is straightforward to show that val(ψ(t)) = φ(val(t)), by induction on the
structure of the expression t (cf. Proposition 4.7 of [BauCou]). As an example,
if t = t1 ◦ t2, then val(ψ(t)) = val(ψ(t1) ◦ ψ(t2)) = val(ψ(t1)) ◦ val(ψ(t2)) =
φ(val(t1)) ◦ φ(val(t2)) = φ(val(t1) ◦ val(t2)) = φ(val(t)), where we have used
Lemma 4(1). As another example, if t = Xi, then φ(val(t)) = φ(atom(Xi)) =
φ(Xi) = val(ei) = val(ψ(t)).

By induction, atom(Xi) ⇒∗ val(ei) in G′. Since G and G′ are related, G′ has
the production X → val(t). It is easy to see that val(t) has n nonterminal edges,
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labeled byX1, . . . , Xn. Hence, by Proposition 2, atom(X) ⇒ val(t) ⇒∗ φ(val(t)).
This shows that atom(X) ⇒∗ val(ψ(t)) = val(e).

The proof in the other direction is similar and is left to the reader. ut

Since the concept of related grammars, as discussed in the above proof, preserves
the number of nonterminals in the right-hand sides of productions, the above
result is also true in the linear case. By Val(LIN-CFG(CS)) we denote the class
of languages generated by linear context-free graph grammars over CS.

Corollary 12. Val(LIN-CFG(CS)) = LIN-HR.

However, in the linear case, the form of the context-free graph grammar can even
be restricted to be “right-linear” in the following sense. A context-free graph
grammar over CS is right-linear if its productions are of the form X → cg ◦ Y or
of the form X → cg, where X and Y are nonterminals. Note in particular that ⊕
is not needed. By Val(RLIN-CFG(CS)) we denote the class of graph languages
generated by right-linear context-free graph grammars over CS.

Theorem13. Val(RLIN-CFG(CS)) = LIN-HR.

Proof. By Corollary 12, it suffices to show that LIN-HR ⊆ Val(RLIN-CFG(CS)).
Let L be a graph language in LIN-HR, and let G = (N, T, P, S) be a linear HR
grammar generating L.

We first consider the case that for every X ∈ N there exists m ∈ N such
that type(X) = (m, 0). By the proof of Theorem 11 it suffices to construct a
context-free graph grammarG′ that is related to G.G′ has the same nonterminal
alphabet as G, with the same initial nonterminal. G′ has the set of productions
P ′ = {p′ | p ∈ P }, where, for each p ∈ P , p′ is defined as follows. Let p be the
production X → g. If g ∈ GR(T ), then we define p′ to be X → cg . Otherwise,
g has exactly one edge e that is labeled with a nonterminal, say, Y . Note that
end(g) = λ and tg(e) = λ. Then we define p′ to be the production X → cg′ ◦ Y ,
where g′ = (Vg , Eg − {e}, s, t, l, begin(g), sg(e)) and s, t, l are the restrictions of
sg , tg, lg to Eg − {e}. Clearly, val(cg′ ◦ Y ) = g′ ◦ atom(Y ) = g. Hence G and G′

are indeed related. Note that the construction of g′ from g is a special case of
that in the first part of the proof of Theorem 7.

We now consider the general case. To be able to use the above special case,
define the LIN-HR grammar G = (N, T, P , S), where N is the same set as
N with a different type function: if type(X) = (m, n) in N , then type(X) =
(m + n, 0) in N . For every graph h ∈ GR(N ∪ T ) we define the graph h =
(Vh, Eh, s, t, lh, begin(h) · end(h), λ) where, for e ∈ Eh, s(e) and t(e) are defined
as follows: if lh(e) ∈ T , then s(e) = sh(e) and t(e) = th(e); if lh(e) ∈ N , then
s(e) = sh(e) · th(e) and t(e) = λ. Note that if h ∈ GR(T ) then h = backfold(h).
We now define P = {X → h | X → h ∈ P }. This ends the definition of G.
It is straightforward to show that L(G) = {backfold(g) | g ∈ L(G)}. In fact,
the derivations of G are exactly all atom(S) ⇒ g1 ⇒ g2 ⇒ · · · ⇒ gn where
atom(S) ⇒ g1 ⇒ g2 ⇒ · · · ⇒ gn is a derivation of G. Since G satisfies the above
special case, we conclude that backfold(L) is in Val(RLIN-CFG(CS)).
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Suppose that type(L) = (m, n). It is easy to verify, for every g of type (m, n),
that

g = (idm ⊕ fold(idn)) ◦ (backfold(g) ⊕ idn).

Hence L = {(idm ⊕ fold(idn)) ◦ (h ⊕ idn) | h ∈ backfold(L)}. Thus, it now
suffices to show that if L′ is in Val(RLIN-CFG(CS)), then so are all languages
{h⊕ idn | h ∈ L′}, for n ∈ N, and all languages {g0 ◦ h | h ∈ L′}, for g0 ∈ GR.
To this aim, let G′ be a right-linear context-free graph grammar generating L′.

Change, in the productions of G′, every constant cg into the constant cg⊕idn .
Clearly, the resulting right-linear context-free graph grammar generates all graphs
(g1 ⊕ idn)◦ · · ·◦ (gk ⊕ idn) with g1 ◦ · · ·◦ gk ∈ L′. By the law of strict monoidality
(Lemma 6(5)),

(g1 ⊕ idn)◦ · · · ◦ (gk ⊕ idn) = (g1 ◦ · · ·◦ gk)⊕ (idn ◦ · · · ◦ idn) = (g1 ◦ · · ·◦ gk)⊕ idn.

This proves that the resulting grammar generates {g ⊕ idn | g ∈ L′}.
Introduce a new initial nonterminal S′, and add to G′ all the productions

S′ → cg0◦g ◦Y and S′ → cg0◦g such that S → cg ◦Y and S → cg are productions
of G′, respectively (where S is the old initial nonterminal of G′). Clearly, the
resulting right-linear grammar generates all graphs (g0 ◦ g1) ◦ g2 ◦ · · · ◦ gk with
g1 ◦ · · · ◦ gk ∈ L′. In other words (using the associativity of concatenation), it
generates the graph language {g0 ◦ h | h ∈ L′}. Note that we could also have
added the one production S′ → cg0 ◦ S; the reason for not doing so will become
clear in the proof of Theorem 27. ut

This result suggests that for context-free graph grammars there is no difference
between the linear and the right-linear case, as opposed to the case of ordinary
context-free grammars (where the right-linear grammars generate the regular
languages which form a proper subclass of the linear languages). More support
for this intuition will be given in the next section.

5 Strings Denote Graphs

Since concatenation of graphs is associative, strings can be viewed as expressions
that denote graphs. Thus, as an even simpler variation of the approach with
expression generating context-free grammars in Section 4, we can use all possible
string grammars to generate graph languages. More generally, every class K of
string languages defines a class Int(K) of graph languages (where Int stands for
‘interpretation’, which is similar to Val in Section 4). An “interpretation” is a
mapping that associates a graph with each symbol of an alphabet.

Definition14. Let A be an alphabet. An interpretation of A is a mapping
h : A → GR; h is extended to a (partial) function from A∗ to GR by

h(a1a2 · · ·an) = h(a1) ◦ h(a2) ◦ · · · ◦ h(an)

with n ≥ 1 and ai ∈ A for all 1 ≤ i ≤ n. ut
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Note that the extended h is partial because the types of the h(ai) may not
fit; moreover, h(λ) is undefined (where λ is the empty string). Thus, the only
“technical trouble” is that the concatenation of graphs is typed whereas the
concatenation of strings is always possible. To deal with this, the following lemma
is useful. It says that the domain of an interpretation is regular.

Lemma15. For every interpretation h : A → GR, the language
{w ∈ A∗ | h(w) is defined} is regular.

Proof. Clearly, h(a1a2 · · ·an) is defined if and only if n ≥ 1 and |end(h(ai))| =
|begin(h(ai+1))| for every 1 ≤ i < n. It is easy to construct a finite automaton
that checks this. ut

For a string language L ⊆ A∗, we define, as usual, the set of graphs h(L) = {g ∈
GR | g = h(w) for some w ∈ L}; note that h(L) need not be a graph language
(in our particular meaning of the term, as defined in Section 2.2) because not
all graphs need have the same type.

Definition16. Let K be a class of string languages. The interpretation of K is
Int(K) = {h(L) | L ∈ K, h : A → GR with L ⊆ A∗, h(L) is a graph language}.

ut

In other words, Int(K) consists of all graph languages h(L), where L is any
language inK and h is any mapping from the symbols of L to graphs. Intuitively,
h determines the interpretation of the symbols, and then the concatenation of
those symbols is interpreted as concatenation of the corresponding graphs.

It is an immediate consequence of Theorem 9 that every graph language h(L)
in Int(K) is of bounded pathwidth, i.e., there exists k such that pathwidth(g) ≤ k
for every g ∈ h(L). In fact, if L ⊆ A∗, then k = max{#Vh(a) | a ∈ A} − 1.

Corollary 17. For every K, every graph language in Int(K) is of bounded path-
width.
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Fig. 4. An interpretation.
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The first class K of interest is the class REG of regular languages. An exam-
ple of a graph language in Int(REG), of type (0, 0), is h(a(b ∪ c)∗d) where the
graphs h(a), h(b), h(c), and h(d) are shown in Fig. 4 (without edge directions and
edge labels). The graph h(abbcbd) is shown in Fig. 5. Clearly, the graph language
h(a(b∪ c)∗d) consists of all “clothes lines” on which triangles and rectangles are
hanging to dry. We first present a characterization of Int(REG) by regular ex-
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Fig. 5. Graph interpretation of the string abbcbd.

pressions, corresponding to the characterization of REG by regular expressions.
To this aim we define the operations of union, concatenation, and (Kleene) star
for graph languages. The operation of graph concatenation is extended to graph
languages L and L′ in the usual way: if type(L) = (k,m) and type(L′) = (m, n),
then their concatenation is defined by L ◦ L′ = {g ◦ g′ | g ∈ L, g′ ∈ L′}. Then,
in the obvious way, the star of a graph language is defined by iterated con-
catenation: for a graph language L with type(L) = (k, k) for some k ∈ N,
L∗ =

⋃
n∈N Ln where Ln = L ◦ · · · ◦ L (n times) for n ≥ 1, and L0 = {idk}.

Also, L+ =
⋃

n≥1L
n is the (Kleene) plus of L. Finally, the union L ∪ L′ of two

graph languages L and L′ is defined only when type(L) = type(L′) (otherwise it
would not be a graph language). Thus, the operations of union, concatenation,
and star are also typed operations on graph languages (as opposed to the case
of string languages for which they are always defined). Let REX(∪, ◦, ∗, SING)
denote the smallest class of graph languages containing the empty graph lan-
guage and all singleton graph languages, and closed under the operations union,
concatenation, and star. Thus, it is the class of all graph languages that can
be denoted by (the usual) regular expressions, where the symbols of the al-
phabet denote singleton graph languages. As an example, the above graph lan-
guage of clothes lines is in REX(∪, ◦, ∗, SING) because it can be written as
{h(a)} ◦ ({h(b)} ∪ {h(c)})∗ ◦ {h(d)}.

Theorem18. Int(REG) = REX(∪, ◦, ∗, SING).

Proof. We have to cope with the “technical trouble” of typing, in particular with
the empty string. Note that, for a graph language L with type(L) = (k, k), L∗ =
L+ ∪ {idk} and L+ = L ◦ L∗. This shows that we can replace star by plus, i.e.,
REX(∪, ◦, ∗, SING) = REX(∪, ◦,+, SING), the smallest class of graph languages
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containing the empty graph language and all singleton graph languages, and
closed under the operations union, concatenation, and plus.

To show that REX(∪, ◦,+, SING) ⊆ Int(REG), it suffices to prove that
Int(REG) contains the empty language and all singleton graph languages, and
that it is closed under union, concatenation, and plus. Clearly, h(∅) = ∅ for
any interpretation h. Also, if h(a) = g, then h({a}) = {g}. Now let L1 ⊆ A∗

1
and L2 ⊆ A∗

2 be regular languages, and let h1 and h2 be interpretations of
A1 and A2, respectively, such that h1(L1) and h2(L2) are graph languages in
Int(REG). Obviously, by a renaming of symbols, we may assume that A1 and A2
are disjoint. Let h = h1 ∪ h2 be the interpretation of A1 ∪A2 that extends both
h1 and h2. It is easy to verify that (with the appropriate conditions on types)
h1(L1)∪h2(L2) = h(L1∪L2), h1(L1)◦h2(L2) = h(L1 ·L2), and h1(L1)+ = h(L+

1 ),
which shows that these graph languages are also in Int(REG).

To show that Int(REG) ⊆ REX(∪, ◦,+, SING), we first note that, since an
interpretation is undefined for the empty string, Int(REG) = Int(REG − λ),
where REG − λ = {L − {λ} | L ∈ REG} is the class of all λ-free regular
languages. It is well known (and easy to prove) that REG − λ is the smallest
class of languages containing the empty language and all languages {a} where a
is a symbol, and closed under the operations union, concatenation, and plus. By
induction on this characterization we show that for every language L ∈ REG−λ
and every interpretation h of the alphabet of L, if h(w) is defined for every
w ∈ L, and h(L) is a graph language, then h(L) ∈ REX(∪, ◦,+, SING). Note
that by Lemma 15 (and the fact that REG is closed under intersection) we can
indeed assume that h is defined for all strings in L. The inductive proof is as
follows. If L is empty, then so is h(L). If L = {a}, then h(L) is a singleton. If
L = L1 ∪L2, then h(L) = h(L1)∪h(L2). Now let L = L1 ·L2 and assume that L1
and L2 are nonempty (otherwise L is empty). Since, by assumption, h(L1 · L2)
is a graph language and h(w) is defined for every w ∈ L1 · L2, h(L1) and h(L2)
are also graph languages; for h(L1) this is proved as follows: if w1, w

′
1 ∈ L1,

then, for any w2 ∈ L2, h(w1 · w2) = h(w1) ◦ h(w2) and similarly for w′
1, and

so |begin(h(w1))| = |begin(h(w1 · w2))| = |begin(h(w′
1 · w2))| = |begin(h(w′

1))|
and |end(h(w1))| = |begin(h(w2))| = |end(h(w′

1))|. Hence h(L) = h(L1 · L2) =
h(L1)◦h(L2). Finally, let L = L+

1 . Then h(L1) is a graph language of some type
(k, k) by an argument similar to the one above, and h(L) = h(L1)+. ut

This result holds in fact for sets of morphisms of arbitrary categories (instead
of the category GR of graphs, cf. Lemma 6). It generalizes a well-known char-
acterization of the rational subsets of a monoid (see, e.g., Proposition III.2.2 of
[Ber]).

The characterization of Theorem 18 still holds after adding the sum op-
eration, extended to graph languages in the usual way: for arbitrary graph
languages L and L′, L ⊕ L′ = {g ⊕ g′ | g ∈ L, g′ ∈ L′}. In other words,
Int(REG) = REX(∪, ◦, ∗,⊕, SING), the smallest class of graph languages con-
taining the empty graph language and all singleton graph languages, and closed
under the operations union, concatenation, star, and sum. This is because of the
following simple reason.
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Lemma19. For every class of languages K, if Int(K) is closed under concate-
nation, then it is closed under sum.

Proof. We first show that if M is in Int(K) then so is M ⊕ {idk} for every k.
This was shown for Val(RLIN-CFG(CS)) in the proof of Theorem 13, and the
following argument is the same as the one used there. Let M = h(L) for some
L ∈ K and some interpretation h of the alphabet A of L. Define h′(a) = h(a)⊕idk

for every a ∈ A. Then h′(a1 · · ·an) =

(h(a1) ⊕ idk) ◦ · · · ◦ (h(an) ⊕ idk) = (h(a1) ◦ · · · ◦ h(an)) ⊕ (idk ◦ · · · ◦ idk)

because of strict monoidality (Lemma 6(5)), and the last expression is equal to
h(a1 · · ·an)⊕ idk. This implies that h′(L) = h(L)⊕{idk} = M⊕{idk}. Similarly
it can be shown that {idk} ⊕M is in Int(K).

Now, for arbitrary graph languages M and M ′ with type(M) = (m, n) and
type(M ′) = (m′, n′), M ⊕M ′ = (M ◦ {idn}) ⊕ ({idm′} ◦ M ′) = (M ⊕ {idm′}) ◦
({idn}⊕M ′) by strict monoidality. Hence, by the above, and the fact that Int(K)
is closed under ◦, M ⊕M ′ is in Int(K). ut

If we allow ⊕ in our regular expressions, then, as should be clear from Theorem 7,
we do not need all singleton graph languages to start with, but only those that
contain elementary graphs (i.e., graphs that belong to some EL(Σ), as defined in
Section 3). Recall that a graph is elementary if it is an atom or one of the graphs
I0,1, I1,0, I1,2, I2,1, π12, or id0. Let REX(∪, ◦, ∗,⊕,ELSING) denote the smallest
class of graph languages containing the empty graph language and all singleton
graph languages with an elementary graph as element, and closed under the
operations union, concatenation, star, and sum.

Theorem20. Int(REG) = REX(∪, ◦, ∗,⊕,ELSING).

Note that this result is closer to the corresponding result for regular languages,
for which only singleton languages {a} are needed where a is a symbol.

The next class K of interest is the class CF of context-free languages. We
will show that Int(CF) is a (proper) subclass of HR, the class of graph languages
generated by HR grammars. In fact, it is rather obvious that Int(CF) is exactly
the class of languages generated by context-free graph grammars over CS that
do not use the sum operation. Thus, Int(CF) is the class of equational subsets
of the algebra of graphs with the concatenation operation. Inclusion in HR then
follows from Theorem 11. As in the previous theorems, we have to cope with the
technical trouble of typing.

Let CS◦ = CS − {⊕} = {◦} ∪ {cg | g ∈ GR}. If ⊕ does not occur in the
productions of a context-free graph grammar over CS, then we also say that
it is over CS◦. By Val(CFG(CS◦)) we denote the class of all graph languages
generated by context-free graph grammars over CS◦. Note that, by definition,
Val(RLIN-CFG(CS)) ⊆ Val(CFG(CS◦)).

Theorem21. Int(CF) = Val(CFG(CS◦)).
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Proof. We first show that Val(CFG(CS◦)) ⊆ Int(CF). Let G = (N, T, P, S)
be a context-free graph grammar over CS◦. Every production of G is of the
form X → α1 ◦ α2 ◦ · · · ◦ αk with k ≥ 1 and αi ∈ N or αi = cg for some
g ∈ GR. Note that we can drop the parentheses from the right-hand sides, due
to the associativity of concatenation. Thus, G generates expressions of the form
cg1 ◦ · · · ◦ cgn with n ≥ 1, and val(L(G)) = {g1 ◦ · · · ◦ gn | cg1 ◦ · · · ◦ cgn ∈ L(G)}.

Define the (ordinary) context-free grammar G′ = (N, T ′, P ′, S) where T ′ is
the set of all cg in T , and P ′ = {X → α1α2 · · ·αk | X → α1 ◦α2 ◦ · · · ◦ αk ∈ P }.
Obviously, L(G′) = {cg1 · · · cgn | cg1 ◦ · · · ◦ cgn ∈ L(G)}. Now let h : T ′ → GR
be the interpretation such that h(cg) = g. Then, clearly, val(L(G)) = h(L(G′)).
Hence val(L(G)) is in Int(CF).

We now show that Int(CF) ⊆ Val(CFG(CS◦)). By Lemma 15 (and the fact
that CF is closed under intersection with regular languages), every Int(CF) graph
language is of the form h(L) where L is a context-free language such that h is
defined for every string in L. In particular, L is λ-free. Let G = (N, T, P, S)
be a context-free grammar generating L. We may assume that the right-hand
sides of the productions of G are non-empty. Define the context-free grammar
G′ = (N, T ′, P ′, S) such that T ′ = {◦} ∪ {ch(a) | a ∈ T}, and P ′ = {X →
ψ(α1)◦ψ(α2)◦ · · · ◦ψ(αk) | X → α1α2 · · ·αk ∈ P }, where ψ(a) = ch(a) for every
a ∈ T , and ψ(X) = X for every X ∈ N . Obviously, L(G′) = {ch(a1) ◦ · · ·◦ch(an) |
a1 · · ·an ∈ L(G)}, and so val(L(G′)) = h(L(G)) = h(L).

The only thing that remains to be proved (and this is the “technical trouble”)
is that G′ is a context-free graph grammar over CS (and it obviously is over CS◦).
In other words, we have to turn N into a typed alphabet, such that the right-
hand sides of the productions are expressions with the same type as the left-hand
sides. To this aim we investigate the grammar G in more detail.

We claim that for all strings w ∈ T ∗ generated by a given nonterminalX ofG,
h(w) is defined and type(h(w)) is the same for all such w. Here we will use the fact
that h is defined for all strings in L. The proof is similar to the argument used at
the end of the proof of Theorem 18. Let X ⇒∗ w1 and X ⇒∗ w2, with wi ∈ T ∗.
Consider some u, v ∈ T ∗ such that S ⇒∗ uXv (assuming G to be reduced).
Then uw1v, uw2v ∈ L. We now show that |begin(h(w1))| = |begin(h(w2))|. Let
type(L) = (m, n). If u = λ, then wiv ∈ L and |begin(h(wi))| = |begin(h(wiv))| =
m. Note that if h is defined for a string w, then it is also defined for every non-
empty substring of w. Now let u 6= λ. Since h is defined on uwiv, |begin(h(wi))| =
|end(h(u))|. In the same way it can be shown that |end(h(w1))| = |end(h(w2))|.

We turn N into a typed alphabet by defining type(X) = type(h(w)) if X ⇒∗

w in G. We now have to show that for every production X → α1 · · ·αk of G,
ψ(α1) ◦ · · · ◦ ψ(αk) is a well-formed expression over CS and N , of the same
type as X. Note first that for every α ∈ N ∪ T and every w ∈ T ∗, if α ⇒∗ w,
then h(w) is defined and type(ψ(α)) = type(h(w)). Now consider α1, . . . , αk in
N ∪ T , and let αi ⇒∗ wi ∈ T ∗, for 1 ≤ i ≤ k. Then ψ(α1) ◦ · · · ◦ ψ(αk) is a well-
formed expression (over CS and N) of type (m, n) if and only if h(w1 · · ·wk) is
defined and type(h(w1 · · ·wk)) = (m, n). Consider the derivation S ⇒∗ uXv ⇒
uα1 · · ·αkv ⇒∗ uw1 · · ·wkv = z. Since z ∈ L, h(z) is defined, and so h(w1 · · ·wk)
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is defined. Moreover, since X ⇒∗ w1 · · ·wk, type(h(w1 · · ·wk)) = type(X). This
shows that ψ(α1)◦ · · · ◦ψ(αk) is a well-formed expression over CS and N , of the
same type as X, as required. ut

Theorem22. Int(CF) ⊂ HR.

Proof. Inclusion follows immediately from Theorems 21 and 11. Proper inclusion
is a consequence of Corollary 17: the set of all trees is in HR, but is not of
bounded pathwidth, as can easily be seen (for a characterization of the trees of
pathwidth k, see [EllST]). ut

Since REG is closed under intersection, the proof of Theorem 21 also works
for Int(REG). In fact, the proof preserves the right-linearity of the grammars.
Hence, Int(REG) = Val(RLIN-CFG(CS)). As an example, the graph language
of clothes lines is generated by the right-linear context-free graph grammar with
productions S → ch(a) ◦X, X → ch(b) ◦X, X → ch(c) ◦X, and X → ch(d), where
h(a), h(b), h(c), h(d) are the graphs in Fig. 4, type(S) = (0, 0), and type(X) =
(1, 0).

Together with Theorem 13, this shows that the graph languages that are
interpretations of a regular language are precisely those that can be generated
by linear HR grammars.

Theorem23. Int(REG) = LIN-HR.

Similarly, the proof of Theorem 21 preserves linearity of the grammars (and LIN
is closed under intersection with regular languages). Since Val(LIN-CFG(CS◦))
is inbetween Val(RLIN-CFG(CS)) and Val(LIN-CFG(CS)), we obtain the next
result by Corollary 12 and Theorem 13.

Theorem24. Int(LIN) = LIN-HR.

The results of this section suggest that for graph languages, regularity and linear-
ity are the same. We have a class of graph languages that may be called the class
of regular graph languages on the one hand (because it is equal to Int(REG) and
to REX(∪, ◦, ∗, SING)), and may be called the class of linear graph languages
on the other hand (because it is equal to Int(LIN) and to LIN-HR).

It will be shown in Section 7 that Int(REG) is a proper subclass of Int(CF).

6 Characterizations of Int(K)

In this section and the next, we investigate properties of the class of graph lan-
guages Int(K) for arbitrary classes of string languages K. However, to avoid
trivialities we will mainly be interested in classes K that are closed under se-
quential machine mappings, where a sequential machine is a transducer which
works like an ordinary nondeterministic finite automaton that, moreover, at
each step outputs one symbol (thus it is a special case of the generalized sequen-
tial machine, or gsm, which outputs a string at each step, see, e.g., [HopUll]).
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Equivalently, K is closed under intersection with regular languages and under
alphabetical substitutions (where an alphabetical substitution from alphabet A
to alphabet B is a relation ρ ⊆ A×B that is extended to a function from A∗ to
the finite subsets of B∗ by ρ(a1 · · ·an) = {b1 · · · bn | (ai, bi) ∈ ρ, 1 ≤ i ≤ n}).

In this section we present two characterizations of Int(K). The first character-
ization of Int(K) is through the notion of replacement, as defined in Section 2.2.
The following closure property of Int(K) will be useful.

Lemma25. For every class K, Int(K) is closed under replacements.

Proof. Clearly, φ(h(L)) = h′(L), where h′ is defined by h′(a) = φ(h(a)) for every
a ∈ A. In fact, for a1, . . . , an ∈ A, φ(h(a1 · · ·an)) = φ(h(a1) ◦ · · · ◦ h(an)) =
φ(h(a1)) ◦ · · · ◦ φ(h(an)) = h′(a1) ◦ · · · ◦ h′(an) = h′(a1 · · ·an), where we have
used Lemma 4(1). ut
The characterization of Int(K) is based on the fact that every interpretation can
be decomposed into an “atomic” interpretation and a replacement. An interpre-
tation h : A → GR ofA is atomic if A is a typed alphabet and h(a) = atom(a) for
every a ∈ A. By AtInt(K) we denote the set of all h(L) ∈ Int(K) such that h is
an atomic interpretation. Recall that Repl denotes the class of all replacements.

Theorem26. For every class K, Int(K) = Repl(AtInt(K)).

Proof. One inclusion follows from Lemma 25. For the other inclusion, let h : A →
GR be an interpretation. Turn A into a typed alphabet by defining type(a) =
type(h(a)) for every a ∈ A. Let t be the unique atomic interpretation of the typed
alphabet A, and let φ : A → GR be the replacement defined by φ(a) = h(a)
for every a ∈ A (i.e., φ is h viewed as a replacement). Clearly, for every string
w ∈ A∗, φ(t(w)) = h(w). In fact, if w = a1 · · ·an, then φ(t(w)) = φ(t(a1) ◦ · · · ◦
t(an)) = φ(t(a1))◦· · ·◦φ(t(an)) = φ(a1)◦· · ·◦φ(an) = h(a1)◦· · ·◦h(an) = h(w),
by Lemma 4(1) and because φ(atom(a)) = φ(a) for every a ∈ A. ut
Note that Lemma 25 and Theorem 26 together show that Int(K) is the smallest
class of graph languages containing AtInt(K) and closed under replacements.

The second characterization of Int(K) generalizes the characterization of
Int(REG) in Theorem 23. To this aim we consider controlled linear HR gram-
mars, in the obvious sense. Let G = (N, T, P, S) be an HR grammar, and let
C be a string language over P (where P is viewed as an alphabet). The graph
language generated by G under control C is the set of all graphs g ∈ GR(T ) for
which there is a derivation atom(S) ⇒p1 g1 ⇒p2 g2 · · · ⇒pn gn with gn = g, such
that the string p1p2 · · ·pn is in C. Recall that ⇒p denotes a derivation step of
G that uses production p. Thus, the control language C specifies the sequences
of productions that the grammar G is allowed to use in its derivations. If C is
taken from a class of languages K, the grammar G together with the control
language C is also called a K-controlled HR grammar.

For a class K of string languages, we denote by LIN-HR(K) the class of
graph languages generated by K-controlled linear HR grammars. Generalizing
Theorem 23 and its proof we obtain the next result.
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Theorem27. For every class K that is closed under sequential machine map-
pings, Int(K) = LIN-HR(K).

Proof. In what follows we assume, without loss of generality, that all languages in
K are λ-free (if K′ = {L−{λ} | L ∈ K}, then Int(K′) = Int(K), LIN-HR(K′) =
LIN-HR(K), K′ = {L ∈ K | λ /∈ L} because a sequential machine mapping can
be used to remove λ, and K′ is closed under sequential machine mappings,
because K is closed under sequential machine mappings and sequential machine
mappings are length-preserving).

With analogous definitions as above, we can define the controlled versions
of context-free grammars and of context-free graph grammars over CS. We first
show that K is the class of languages generated by the K-controlled right-linear
context-free grammars. In one direction, let L ∈ K with L ⊆ T ∗. Define the
right-linear context-free grammar G = ({S}, T, P, S), where P consists of all
productions pa : S → aS and p′

a : S → a for all a ∈ T . Let L′ be the control
language that is obtained from L by a sequential machine mapping that changes
each string a1 · · ·an−1an into the string pa1 · · · pan−1p

′
an

. Then L is the language
generated by G under control L′. In the other direction, let G = (N, T, P, S)
be a right-linear context-free grammar, let C ∈ K be a control language, and
let L be the language generated by G under control C. Let φ be the sequential
machine mapping that, for a given string p1 · · ·pn ∈ P ∗, checks whether there
is a derivation S ⇒p1 w1 · · · ⇒pn wn with wn ∈ T ∗ (by simulating G in its
finite control) and changes each production into the unique terminal symbol
that occurs in its right-hand side. Then, clearly, φ(C) = L and hence L is in K.

It is now easy to generalize the proof of Theorem 21 to the case of K-
controlled right-linear grammars. This shows that Int(K) is equal to the K-
controlled version of Val(RLIN-CFG(CS)), i.e., to the class of graph languages
generated by K-controlled right-linear context-free graph grammars over CS.
Thus, it now suffices to check that the proof of Theorem 13 can be generalized
to the K-controlled case.

First we check that the proof of Theorem 11 can be generalized to the K-
controlled case, for linear grammars. We have proved a relationship between
the derivations X ⇒∗ e of a context-free graph grammar G and the derivations
atom(X) ⇒∗ val(e) of an HR grammar G′. This proof can be extended to show
that if the sequence of productions used in the first derivation is p1p2 · · · pn, then
the sequence of productions used in the second derivation is p′

1p
′
2 · · ·p′

n, where,
for each production p = X → t of G, p′ is the production X → val(t) of G′; to see
this, note that in the linear case of Proposition 2, the sequence of productions
used in h ⇒∗ g equals the sequence of productions used in atom(Y ) ⇒∗ φ(Y ),
where Y is the unique nonterminal in lab(h). Thus, if C is the control language
of G, then the control language for G′ can be obtained from C by a sequential
machine mapping that changes every p into p′.

We now consider the proof of Theorem 13. Clearly, for the LIN-HR grammar
G we can take the same control language that is used by G (modulo a renaming),
because there is a clear one-to-one correspondence between their productions. In
the remaining two constructions, we can take the same control language in the
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first case, and in the second case we can apply a sequential machine mapping to
the control language that changes the first production of a production sequence
into the corresponding production for the new initial nonterminal S′ (which was
the reason to use that particular construction). ut

7 Comparison of Int(K) and Int(K′)

From Theorems 23 and 24 we know that Int(REG) = Int(LIN) = LIN-HR. It
can be shown by a direct construction (see [Ver]) that even Int(DB) = LIN-HR,
where DB is the class of derivation bounded context-free languages (see, e.g.,
Section VI.10 of [Sal], where they are called languages of “finite index”). One
now wonders when Int(K) = Int(K′), and in particular one wonders how much
larger the class K can be made without enlarging the class Int(K).

It is easy to see that for every given class K there is a largest class K′ such
that Int(K′) = Int(K). We will call this the extension of K, denoted Ext(K).
In fact, Ext(K) =

⋃{K′ | Int(K′) = Int(K)}. Note that, for arbitrary classes K
and K′, Int(K) = Int(K′) if and only if Ext(K) = Ext(K′).
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Fig. 6. Interpretation h.
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Fig. 7. The graph gr(a5b5c5) = h(pq4r).
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In the next theorem we give a characterization of Ext(K). For a class G
of graph languages, let Str(G) denote the class of string languages L such that
gr(L) is in G. Here, gr(L) = {gr(w) | w ∈ L}, and, for a string w = a1 · · ·an with
n ≥ 1, gr(w) = (V, E, s, t, l, begin, end) is the (ordinary) graph of type (1, 1) with
V = {x1, . . . , xn+1}, E = {e1, . . . , en}, s(ei) = xi, t(ei) = xi+1, and l(ei) = ai

for every 1 ≤ i ≤ n, begin = x1 and end = xn+1. Thus, gr(w) encodes w in the
obvious way: it is a path with the symbols of w as edge labels.

As a classical example, the languageL = {anbncn | n ≥ 1} is in Str(Int(REG)),
because L = h(M) with M = pq∗r and h is shown in Fig. 6. The graph
gr(a5b5c5) = h(pq4r) is shown in Fig. 7.

Note that gr(λ) is not defined. This implies that L ∈ Str(G) iff L − {λ} ∈
Str(G). It is also implies that ‘gr’ is the unique atomic interpretation which is
obtained by viewing every symbol as having type (1, 1); hence gr(L) ∈ Int(K)
for every L ∈ K, which means that K ⊆ Str(Int(K)).

Theorem28. For every class K that is closed under sequential machine map-
pings, Ext(K) = Str(Int(K)).

Proof. Clearly, if Int(K′) = Int(K), then K′ ⊆ Str(Int(K′)) = Str(Int(K)).
Thus, it remains to show that Int(Str(Int(K))) = Int(K). SinceK ⊆ Str(Int(K)),
Int(K) ⊆ Int(Str(Int(K))). For the other inclusion it suffices, by Lemma 25 and
Theorem 26, to show that AtInt(Str(Int(K))) ⊆ Int(K). To prove this, let L1 ∈
K, let h1 be an interpretation of the alphabet A of L1 such that h1(L1) = gr(L2)
for some λ-free string language L2, and let h2 be an atomic interpretation of the
alphabet B of L2. Thus, h1 : A → GR(B) where each symbol from B has type
(1, 1). However, for the atomic interpretation h2 each symbol b from B has an-
other (arbitrary) type that we will denote by type(b). Note that h2(b) = atom(b),
where type(atom(b)) = type(b); hence type(b) = (|begin(h2(b))|, |end(h2(b))|).
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Fig. 8. Graphs gr(w) and h2(w) for w = bcbc, with type(b) = (2, 3) and type(c) = (3, 2).

We have to construct a language L ∈ K and an interpretation h such that
h(L) = h2(L2). For a string w ∈ L2 such that h2(w) is defined, the graph h2(w)
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can be obtained from the graph gr(w) (which is an element of h1(L1)) in an
easy way, as follows (see Fig. 8). Each node v of gr(w) has to be “expanded”
into a sequence of distinct nodes (v, 1), (v, 2), . . . , (v, µ(v)), where µ stands for
“multiplicity”. Clearly, µ(v) is determined by type(b), where b is the label of an
edge e incident with v: if e enters v, then µ(v) = |end(h2(b))|, and if e leaves
v, then µ(v) = |begin(h2(b))|. Every edge e of gr(w), with source u and target
v, should be replaced by an edge e with sources (u, 1), . . . , (u, µ(u)) and targets
(v, 1), . . . , (v, µ(v)) (and the same label). In Fig. 8, the multiplicity of the nodes
of gr(w) is 2, 3, 2, 3, 2, respectively. The edges of h2(w) are drawn as squares,
with “tentacles” from their sources and to their targets (where we asume that
the tentacles are ordered, e.g., from top to bottom).

We now define this expansion process formally, for arbitrary graphs in GR(B).
Let M be a number such that for all b ∈ B, if type(b) = (m, n), then m, n ≤ M .
A decoration of a graph g ∈ GR(B) is a mapping µ : Vg → {1, . . . ,M} such that
for every edge e of g with s(e) = u, t(e) = v, and l(e) = b: type(b) = (µ(u), µ(v)),
i.e., µ(u) = |begin(h2(b))| and µ(v) = |end(h2(b))|. Note that for every graph
gr(w), h2(w) is defined if and only if there is a decoration µ of gr(w), and in
that case µ is unique. For a graph g ∈ GR(B) and a decoration µ of g, the
expansion of g by µ, denoted exp(g, µ), is the graph that has all nodes (v, i)
where v is a node of g and 1 ≤ i ≤ µ(v); it has the same edges as g (with the
same labels), but if s(e) = u and t(e) = v in g, then s(e) = (u, 1) · · · (u, µ(u))
and t(e) = (v, 1) · · · (v, µ(v)) in exp(g, µ); finally, if begin(g) = v1v2 · · ·vk, then
begin(exp(g, µ)) =

(v1, 1) · · · (v1, µ(v1)) · · · (v2, 1) · · · (v2, µ(v2)) · · · (vk, 1) · · · (vk, µ(vk)),

and similarly for end(g) and end(exp(g, µ)). It should be clear that for every
w ∈ L2 for which h2(w) is defined, h2(w) = exp(gr(w), µ) where µ is the unique
decoration mentioned above.

Based on this idea of expansion we now change L1 into L and h1 into h,
as follows. Let A′ be the alphabet consisting of all pairs (a, µ) with a ∈ A and
µ is a decoration of h1(a). Intuitively, µ is a guess of the multiplicities of the
nodes of h1(a) as they will occur in a graph of h1(L1); for nodes that are in-
cident with an edge, this multiplicity is determined by the label of that edge,
but for the other nodes (which are necessarily begin or end nodes because gr(w)
has no isolated nodes) their multiplicity will only be clear after concatenation.
Let ρ be the alphabetical substitution that substitutes all possible (a, µ) for
a, i.e., ρ = {(a, (a, µ)) | (a, µ) ∈ A′}. Thus, ρ(L1) = {(a1, µ1) · · · (an, µn) |
a1 · · ·an ∈ L1, (aj, µj) ∈ A′}. Let R be the regular language over A′ that
consists of all strings (a1, µ1) · · · (an, µn) such that h1(a1 · · ·an) is defined and
µj(end(h1(aj))(i)) = µj+1(begin(h1(aj+1))(i)) for all relevant j and i (to be pre-
cise: for all 1 ≤ j < n and all 1 ≤ i ≤ |end(h1(aj))|; note that |end(h1(aj))| =
|begin(h1(aj+1))| because h1(a1 · · ·an) is defined). In words, the language R
checks that the guessed multiplicity of the ith end node of h1(aj) equals that of
the ith begin node of h1(aj+1). Thus, R checks that the guessed multiplicities
are consistent with the identification of nodes when concatenating the graphs
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h1(a1), . . . , h1(an) (and hence are the correct multiplicities). It should be clear
that R is indeed regular (cf. Lemma 15). We now define L = ρ(L1)∩R; since, by
assumption, K is closed under sequential machine mappings, L is in K. Finally,
for (a, µ) ∈ A′ we define h(a, µ) = exp(h1(a), µ).

It should now be clear that h(L) = h2(L2). A formal proof can be given as
follows.

Let a decorated graph be a pair (g, µ) with g ∈ GR(B) and µ a decoration of
g. Define the concatenation of decorated graphs, as follows. For decorated graphs
(g1, µ1) and (g2, µ2), if g1 ◦ g2 is defined and µ1(end(g1)(i)) = µ2(begin(g2)(i))
for all i, then their concatenation is (g1, µ1)◦(g2, µ2) = (g1◦g2, µ) with µ([x]R) =
µj(x) if x ∈ Vgj (where we assume the terminology of Definition 3). It is easy to
see that, the other way around, if g1 ◦ g2 is defined and (g1 ◦ g2, µ) is a decorated
graph, then there exist decorations µ1 and µ2 of g1 and g2, respectively, such that
(g1, µ1)◦ (g2, µ2) = (g1 ◦ g2, µ). As a basic property of ‘exp’ it can be shown that
it is a homomorphism with respect to the concatenation of decorated graphs:
exp((g1, µ1) ◦ (g2, µ2)) = exp(g1, µ1) ◦ exp(g2, µ2).

Now consider some string a1 · · ·an ∈ L1. Then h2(gr−1(h1(a1 · · ·an)) is de-
fined if and only if there exist decorations µi such that (h1(ai), µi) is a deco-
rated graph, for all i, and their concatenation (h1(a1), µ1) ◦ · · · ◦ (h1(an), µn)
is defined. And this is if and only if there exist µi such that (ai, µi) ∈ A′ and
(a1, µ1) · · · (an, µn) ∈ R. Moreover, in that case, for the unique decoration µ of
h1(a1 · · ·an),

h2(gr−1(h1(a1 · · ·an)) = exp(h1(a1 · · ·an), µ) =
exp((h1(a1), µ1) ◦ · · · ◦ (h1(an), µn)) =
exp(h1(a1), µ1) ◦ · · · ◦ exp(h1(an), µn) =
h(a1, µ1) ◦ · · · ◦ h(an, µn) = h((a1, µ1) · · · (an, µn)).

This shows that h2(L2) = h(L). ut

As a corollary of Theorem 28 we obtain that for arbitrary K and K′ (both
closed under sequential machine mappings), Int(K) = Int(K′) if and only if
Str(Int(K)) = Str(Int(K′)). This means that the graph generating power of K
is completely determined by its string generating power (with strings coded as
graphs by the mapping gr).

We now show that Ext(K) is a class of languages that is well known in formal
language theory. By 2DGSM(K) we denote the class of images of languages from
K under 2dgsm mappings, i.e., the class of all f(L) where f is a 2dgsm map-
ping and L ∈ K. A 2dgsm (i.e., a two-way deterministic generalized sequential
machine) is a deterministic finite automaton that can move in two directions on
its input tape (with endmarkers), and outputs a (possibly empty) string at each
step. As an example, {anbncn | n ≥ 1} is in 2DGSM(REG), because it is easy to
construct a 2dgsm that translates pqnr into an+1bn+1cn+1 for every n ∈ N. The
proof of the next result is obtained by generalizing the proof in [EngHey] that
Str(LIN-HR) equals the class of output languages of 2dgsm mappings. We say

29



that K is nontrivial if it is not a subset of {∅, {λ}}; in other words, K contains
at least one language that contains a nonempty string.

Lemma29. For every nontrivial class K that is closed under sequential ma-
chine mappings, Str(LIN-HR(K)) = 2DGSM(K).

Proof. To reduce the proof to a generalization of the proof in [EngHey], we have
to deal with some technical details. In particular, the coding ‘gr’ (and hence the
operation ‘Str’) is defined in a different way (see Definition 2.2 of [EngHey]).
We will discuss this in steps. Note that, by Theorem 27, Str(LIN-HR(K)) =
Str(Int(K)).

First of all, let gr1 be defined in the same way as gr, except that additionally
gr1(λ) = id1; and let Str1 be defined in the same way as Str, with gr1 instead
of gr. We claim that Str1(Int(K)) = Str(Int(K)). Thus, we have to show that
for every language L, gr1(L) ∈ Int(K) iff gr(L) ∈ Int(K). This is obvious if
λ /∈ L. If λ ∈ L, then gr1(L) = gr(L) ∪ {id1}. Assume first that gr(L) is in
Int(K). If gr(L) = ∅, we have to show that {id1} ∈ Int(K). Since K is not
a subset of {∅, {λ}}, K contains a language M ⊆ A∗ such that M contains
at least one nonempty string. Define the interpretation h with h(a) = id1 for
all a ∈ A. Then h(M) = {id1} (because id1 ◦ id1 = id1). Now let gr(L) 6= ∅.
Let gr(L) = h(M) for some interpretation h and some M ∈ K. Then M must
contain a nonempty string w. Let b be a new symbol, not in the alphabet A
of M , and define the interpretation h′ of A ∪ {b} such that h′(a) = h(a) for
every a ∈ A and h(b) = id1. Then h′(M ∪ {b|w|}) = h(M) ∪ {id1} = gr1(L).
It is easy to see that there is a sequential machine mapping that transforms M
into M ∪ {b|w|}. This proves one direction of the equivalence. To show the other
direction, assume that gr1(L) ∈ Int(K). If id1 ∈ gr(L), then there is nothing to
prove. Now let id1 /∈ gr(L). Then gr(L) = gr1(L) − {id1}. Let gr(L) = h(M)
for some interpretation h and some M ∈ K, M ⊆ A∗. Let B be the set of
all a ∈ A such that h(a) has at least one edge. Then the regular language
A∗BA∗ is the set of all w ∈ A∗ such that h(w) contains at least one edge. Hence
gr(L) = h(M ∩A∗BA∗) ∈ Int(K).

Second, let gr2(w) = backfold(gr1(w)), and let Str2 be defined on the basis of
gr2. Then Str2(Int(K)) = Str1(Int(K)). This is because for every graph language
L, L ∈ Int(K) iff backfold(L) ∈ Int(K). To see this, note that for every graph
g with type(g) = (m, n), backfold(g) = (g ⊕ idn) ◦ backfold(idn) (see the proof
of Theorem 7) and g = (idm ⊕ fold(idn)) ◦ (backfold(g) ⊕ idn) (see the proof of
Theorem 13). Thus, it suffices to show that Int(K) is closed under the operations
L′ ⊕ {idn}, {h} ◦L′, and L′ ◦ {h}. For the first operation this has been shown in
the proof of Lemma 19. The other two operations are left to the reader (see the
end of the proof of Theorem 13 and the end of the proof of Theorem 27).

Third, define gr3(w) in the same way as gr2(w), except that the type of the
edges is changed from (1, 1) to (2, 0). To be precise, an edge e with s(e) = u and
t(e) = v in gr2(w), has s(e) = uv and t(e) = λ in gr3(w). It should be clear that
Str3(Int(K)) = Str2(Int(K)), where Str3 is based on gr3 in the usual way.

In [EngHey], the coding gr3 is used instead of gr. We have just shown that this
does not change the class Str(LIN-HR(K)), in the sense that Str3(LIN-HR(K)) =
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Str(LIN-HR(K)). Another small difference is that in [EngHey] all (terminal
and nonterminal) edges of graphs have type (m, 0) for some m. Let us indi-
cate this here by HR′. Since all edges of gr3(w) have type (2, 0), and since
backfold(gr3(w)) = gr3(w), it should be clear from the construction of G in
the proof of Theorem 13 that for every language L, gr3(L) ∈ LIN-HR′(K) iff
gr3(L) ∈ LIN-HR(K). This shows that Str(LIN-HR(K)) = Str3(LIN-HR′(K)),
the class considered in [EngHey].

It is proved in [EngHey] that Str(LIN-HR) equals the class of ranges of
2dgsm mappings. Since it is easy to see that LIN-HR(REG) = LIN-HR and
that 2DGSM(REG) is the class of output languages of 2dgsm’s (by incorporat-
ing the regular control language in the finite control of the grammar and the
2dgsm, respectively), this proves the theorem for K = REG. The proof of the
general case consists of a careful analysis of the proof in [EngHey], which shows
that it can be generalized to K-controlled grammars, under the assumption that
K is closed under sequential machine mappings (and K is nontrivial). This anal-
ysis can easily be carried out. ut
From Theorems 27, 28, and Lemma 29, we obtain our second characterization
of the class Ext(K).

Theorem30. For every nontrivial class K that is closed under sequential ma-
chine mappings, Ext(K) = 2DGSM(K).

Corollary 31. For all nontrivial classes K and K′ that are closed under se-
quential machine mappings,
Int(K) = Int(K′) if and only if 2DGSM(K) = 2DGSM(K′).

Quite a lot is known about the class 2DGSM(K), see, e.g., [EngRS]. As an ex-
ample, it equals the class of languages generated by K-controlled ETOL systems
of finite index (Corollary 4.10 of [EngRS]). The trivial fact that Ext(Ext(K)) =
Ext(K) corresponds to the known result that 2DGSM(2DGSM(K)) is equal to
2DGSM(K); this shows that Ext(K) is closed under 2dgsm mappings (cf. Corol-
lary 5.8 of [EngRS]).

Theorem 30 and Corollary 31 allow us to use known formal language theoretic
results for the classes 2DGSM(K) to find out the power of the classes Int(K).
Thus, for K = REG, Ext(K) is the class 2DGSM(REG) of output languages
of 2dgsm mappings. Since it is well known that the class DB of derivation-
bounded context-free languages is contained in 2DGSM(REG) (see, e.g., [Raj]),
this implies the previously mentioned result that Int(DB) = Int(REG). Also,
since there is a context-free language not in 2DGSM(REG), see Lemma 4.24 of
[Gre] (or Theorem 3.2.17 of [EngRS]), Int(REG) is properly included in Int(CF).

Theorem32. Int(REG) = Int(LIN) = Int(DB) ⊂ Int(CF) ⊂ HR.

Finally, we would like to know whether Int(CF) is the largest class Int(K) that
is included in HR. This is true if and only if Ext(CF) is the largest class K such
that Int(K) is included in HR. Trying to find an answer to this question, we first
characterize this largest class.
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Theorem33. Str(HR) is the largest class K such that Int(K) ⊆ HR.

Proof. The proof is similar to the one of Theorem 28. We first observe that HR
is closed under replacements. In fact, if G is a context-free graph grammar over
CS (see Theorem 11) and φ is a replacement, then φ(val(L(G))) = val(L(G′)),
where G′ is obtained from G by changing every constant cg that occurs in the
productions of G into cφ(g). The correctness of this construction follows from
Lemma 4.

As in the proof of Theorem 28 it now suffices to show that AtInt(Str(HR)) ⊆
HR. Instead of HR we consider the class Val(CFG(CS)), see Theorem 11. Let
G = (N, T, P, S) be a context-free graph grammar over CS such that val(L(G)) =
gr(L) for some language L ⊆ B∗, and let h be an atomic interpretation of B such
that h(L) is a graph language. Note that, as in the proof of Theorem 28, each
symbol b ∈ B has type (1, 1) in val(L(G)), and has an arbitrary type with respect
to h. We may assume that G is in normal form, i.e., that all its productions are
of the formX → cg orX → Y ◦Z orX → Y ⊕Z, where X, Y, Z ∈ N and g ∈ GR
(this is the usual normal form of regular tree grammars, see, e.g., [GécSte]).

We have to construct a context-free graph grammar G′ = (N ′, T ′, P ′, S′)
such that val(L(G′)) = h(L). The idea of the construction is the same as in
the proof of Theorem 28: each graph gr(w) for which h(w) is defined, is trans-
formed into exp(gr(w), µ), where µ is the unique decoration of gr(w) (see the
proof of Theorem 28 for the terminology used). Let M be the maximal number
occurring in the types of the symbols of B (with respect to h). We define N ′

to consist of all triples (X, µb, µe) such that X ∈ N and µb, µe ∈ {1, . . . ,M}∗

with type(X) = (|µb|, |µe|); moreover, type(X, µb, µe) = type(X). The intuition
is that if atom(X) ⇒∗ g where g is terminal, then atom(X, µb, µe) ⇒∗ exp(g, µ)
where µ is the decoration of g such that µ(begin(g)(i)) = µb(i) for all 1 ≤ i ≤ |µb|
and µ(end(g)(j)) = µe(j) for all 1 ≤ j ≤ |µe| (note that, assuming G to be re-
duced, µ is unique because all isolated nodes of g are begin or end nodes).
The initial nonterminal S′ of G′ is (S, 〈m〉, 〈n〉), where (m, n) = type(h(L)).
The productions in P ′ are defined as follows. If X → Y ◦ Z is in P , then
(X, µb, µe) → (Y, µb, µ) ◦ (Z, µ, µe) is in P ′ for all appropriate strings µb, µe,
and µ over {1, . . . ,M}. If X → Y ⊕ Z is in P , then (X, µb · µ′

b, µe · µ′
e) →

(Y, µb, µe) ⊕ (Z, µ′
b, µ

′
e) is in P ′ for all (Y, µb, µe), (Z, µ′

b, µ
′
e) ∈ N ′. Finally, if

X → cg is in P , then (X, µb, µe) → cexp(g,µ) is in P ′ for all strings µb, µe and
all decorations µ of g such that µ(begin(g)(i)) = µb(i) and µ(end(g)(j)) = µe(j)
for all appropriate i and j.

This ends the construction of G′. A formal correctness proof is left to the
reader. It should be based on a definition of the sum of decorated graphs, and
the fact that ‘exp’ is a homomorphism with respect to this sum (and the cor-
responding fact for the concatenation of decorated graphs, as observed in the
proof of Theorem 28). ut

This proves that Int(Str(HR)) is the largest class Int(K) that is included in HR.
It is shown in [EngHey] that the class Str(HR) of string languages gen-

erated by HR grammars is equal to the class OUT(DTWT) of output lan-
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guages of deterministic tree-walking transducers. It now follows from Theo-
rems 30 and 33 that Int(CF) is the largest class Int(K) that is included in HR
if and only if Ext(CF) is the largest class K such that Int(K) ⊆ HR if and
only if 2DGSM(CF) = OUT(DTWT). Note that it follows from our results that
2DGSM(CF) = Ext(CF) = Str(Int(CF)) ⊆ Str(HR) = OUT(DTWT), which
was proved in a completely different way in Corollary 5.6 of [EngRS] (where
2DGSM(CF) is denoted DCS(CF), and OUT(DTWT) is denoted DCT(REC)
or yTfc(REC)). However, equality of 2DGSM(CF) and OUT(DTWT) is men-
tioned as an open problem after Corollary 5.6 of [EngRS]. Hence, it is an open
problem whether or not Int(CF) is the largest class Int(K) that is included in
HR. As another open problem we mention the following: is it true that every HR
graph language of bounded pathwidth is in Int(Str(HR))? Or even in Int(CF)?
Note that all HR graph languages in Int(Str(HR)) are of bounded pathwidth by
Corollary 17. Some more open problems are: is it decidable whether an HR graph
language is in Int(REG)? and the same question for Int(CF) and Int(Str(HR)).

We finally mention that it would be interesting to find another natural op-
eration of concatenation of graphs that can be used to characterize the graph
languages generated by the linear edNCE grammars (which are node replace-
ment graph grammars, see, e.g., [CouER]).

Acknowledgment. We wish to thank Hans Bodlaender for the references to
pathwidth.
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