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Abstract

An operation of concatenation is introduced for graphs. Then strings are viewed
as expressions denoting graphs, and string languages are interpreted as graph lan-
guages. For a class K of string languages, Int(K) is the class of all graph languages
that are interpretations of languages from K. For the class REG of regular languages,
Int(REG) might be called the class of regular graph languages; it equals the class of
graph languages generated by linear Hyperedge Replacement Systems. Two charac-
terizations are given of the largest class K′ such that Int(K′) = Int(K).

Context-free graph languages are generated by context-free graph grammars, which
are graph replacement systems. One of the most popular types of context-free graph
grammar is the Hyperedge Replacement System, or HR grammar (see, e.g., [9]). A com-
pletely different way of generating graphs (introduced in [1]) is to select a number of
graph operations, to generate a set of expressions (built from these operations), and to
interpret the expressions as graphs. The set of expressions is generated by a classical
context-free grammar generating strings (or a regular tree grammar). It is shown in [1]
that, for a particular collection of graph operations, this new way of generating graphs is
equivalent with the HR grammar. Other work on the generation of graphs through graph
expressions is in, e.g., [2, 3, 4, 5, 11].

We introduce a new, natural operation on graphs (which is a simple variation of the
graph operations in [1]). Due to its similarity to concatenation of strings, it is called con-
catenation of graphs. Together with the sum operation of graphs (as defined in [1]) and
all constant graphs, a collection of graph operations is obtained that is simpler than the
one in [1], but also has the power of the HR grammar (which is our first result).

Let us be a bit more precise. We consider the multi-pointed graphs (or multi-pointed
hypergraphs) of [9]. For simplicity we will restrict ourselves in this paper to graphs,
but all arguments also hold for hypergraphs. A multi-pointed graph is a directed, edge-
labeled graph g with a designated sequence begin(g) of “begin nodes” and a designated
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sequence end(g) of “end nodes”. If begin(g) has lengthm and end(g) has length n (with
m,n ∈ N = {0,1,2, . . .}), then g is said to be of type (m,n) and we write type(g) =
(m,n). From now on we will drop the adjective “multi-pointed”. As usual we consider
both concrete and abstract graphs, where an abstract graph is an equivalence class of
isomorphic concrete graphs. The isomorphisms between graphs g and h are the usual
ones, which, additionally, should map begin(g) to begin(h), and end(g) to end(h). In
particular, isomorphic graphs have the same type. Our operations are defined on ab-
stract graphs. The set of abstract graphs will be denoted GR. A (typed) graph language
is a subset L of GR such that all graphs in L have the same type (m,n), also called the
type of L, and denoted by type(L) = (m,n).

If g and h are graphs with type(g) = (k,m) and type(h) = (m,n), then their concate-
nation g ◦ h is the graph obtained by first taking the disjoint union of g and h, and then
identifying the ith end node of g with the ith begin node of h, for every i ∈ {1, . . . ,m}.
Moreover, begin(g ◦h) = begin(g) and end(g ◦h) = end(h), and so type(g ◦h) = (k, n).
Note that the concatenation of g and h is defined only when end(g) and begin(h) have
the same length. The sum g+h of arbitrary graphs g and h (as defined in [1]) is their dis-
joint union, with begin(g +h) = begin(g) ·begin(h) and end(g+ h) = end(g) · end(h),
where · denotes the usual concatenation of sequences. Intuitively, concatenation is se-
quential composition of graphs, and sum is parallel composition of graphs.

We investigate some simple properties of these graph operations: they lead to a strict
monoidal category. The objects of this category are the natural numbers, and each (ab-
stract) graph of type (m,n) is a morphism from m to n in this category. Concatenation
is the composition of morphisms. For each n, the identity morphism from n to itself
is the (abstract graph corresponding to the) discrete graph idn with nodes 1, . . . , n and
begin(idn) = end(idn) = (1, . . . , n). The fact that the category is strict monoidal means
that idm+n = idm + idn and (g + h) ◦ (g′ + h′) = (g ◦ g′) + (h ◦ h′) (assuming that g ◦ g′
and h ◦ h′ are defined).

Let ∆ be the set of operators {◦,+}∪ {cg | g ∈ GR}, where ◦ and + are concatenation
and sum of graphs, as discussed above, and cg is a constant standing for the graph g. A
regular tree grammar over ∆ is an ordinary context-free grammar G such that the right-
hand side of each production of G is a (well-typed) expression over the operators from∆ and the nonterminals of the grammar (which should be treated as constant operators,
with a given type). Obviously, the language L(G) generated by G is a set of expressions
over ∆ (and it is called a regular tree language). But G can also be viewed as a (context-
free) graph grammar, generating the graph language val(L(G)) = {val(e) | e ∈ L(G)},
where the graph val(e) is the value of the expression e. Let Val(REGT) = {val(L(G)) |
G is a regular tree grammar over ∆}. Intuitively, Val(REGT) is the class of “values of reg-
ular tree languages” over ∆ (where values of expressions are graphs).

As an example, consider the context-free grammar Gb that has one nonterminal A,
with type(A) = (1, 0), and two productions A → cg ◦ (A + A) and A → cg′, where g is
the triangle of type (1,2) with set of nodes {x, y, z}, set of edges {(x, y), (x, z), (y, z)},
begin(g) = 〈x〉 and end(g) = 〈y,z〉, and g′ is the graph of type (1,0) with one node u,
no edges, begin(g′) = 〈u〉 and end(g′) is the empty sequence. Then val(L(Gb)) is the
set of all graphs of type (1,0) that are obtained from binary trees by connecting each
pair of brothers by an additional edge; the sequence of begin nodes consists of the root
of the binary tree. This graph language is therefore in Val(REGT).

Our first result is that generating graph languages in the above way is equivalent to
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generating them with HR grammars. As observed above, this is a simple variant of the
result of [1]. Let HR denote the class of all graph languages generated by HR grammars.

Theorem 1 Val(REGT) = HR.

Since concatenation of graphs is associative, strings can be viewed as expressions that
denote graphs. Thus, as an even simpler variation of the above approach, we can use
ordinary string grammars to generate graph languages. More generally, every class K of
string languages defines a class Int(K) of graph languages (where Int stands for “inter-
pretation”, which is similar to Val above). Formally, a mapping h : Σ→ GR that associates
a graph with each symbol from an alphabet Σ, is extended to a (partial) function from Σ∗
to GR by:

h(a1a2 · · ·an) = h(a1) ◦ h(a2) ◦ · · · ◦ h(an)
where ai ∈ Σ for all i, and n ≥ 1. Note that the extended h is partial because the types
of the h(ai) may not fit (and h is also undefined for the empty string). Thus, the only
“technical trouble” is that the concatenation of graphs is typed whereas the concatena-
tion of strings is always possible. For a string language L ⊆ Σ∗, we define, as usual, the
set of graphs h(L) = {g ∈ GR | g = h(w) for some w ∈ L}; note that h(L) need not be a
graph language (with our particular meaning of the term) because not all graphs need
have the same type. Now we define Int(K) = {h(L) | L ∈ K, h : Σ → GR with L ⊆Σ∗, h(L) is a graph language}. In other words, Int(K) consists of all graph languages
h(L), where L is any language inK and h is any mapping from the symbols of L to graphs.
Intuitively, h determines the interpretation of the symbols, and the concatenation of sym-
bols is interpreted as concatenation of graphs.

To avoid trivialities we will, in what follows, and without always mentioning it, only
consider classes K that are closed under (nondeterministic) sequential machine map-
pings (where a sequential machine is an ordinary finite automaton that, moreover, at each
step outputs one symbol). Thus, in particular, K is closed under intersection with reg-
ular languages and under finite substitutions. Note that every semi-AFL is closed under
sequential machine mappings.

The first class K of interest is the class REG of regular languages. An example of a
graph language in Int(REG), of type (1,0), is h(ab∗) with h(a) = g and h(b) = g′,
where g and g′ are as in the example grammar Gb, except that now g is of type (1,1)
and has end(g) = 〈z〉. This graph language is the subset of val(L(Gb)) consisting of all
sequences of concatenated triangles, where two consecutive triangles have one node in
common (and each node belongs to at most two triangles).

Our second result says that the graph languages that are interpretations of a regular
language are precisely those that can be generated by linear HR grammars, where “linear”
means that there is at most one nonterminal in each right-hand side of a production of
the HR grammar. This can be proved by comparing right-linear string grammars (which
have productions of the form A → aB and A → a) with linear HR grammars (of which,
roughly speaking, the productions can be written as A → h(a) ◦ B and A → h(a) for an
appropriate h). Let LIN-HR denote the class of graph languages generated by linear HR
grammars.

Theorem 2 Int(REG) = LIN-HR.
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Before continuing with other classes K, we first consider a third characterization of the
class Int(REG), corresponding to the characterization of REG by regular expressions. The
operation of graph concatenation is extended to graph languages L and L′ in the usual
way: if type(L) = (k,m) and type(L′) = (m,n), then their concatenation is defined by
L ◦ L′ = {g ◦ g′ | g ∈ L,g′ ∈ L′}. Then, in the obvious way, the (Kleene) star of a graph
language is defined (by iterated concatenation): for a graph language L with type(L) =
(k, k) for some k ∈ N, L∗ = ⋃

n∈NLn where Ln = L ◦ · · · ◦ L (n times) for n ≥ 1, and
L0 = {idk}. Also, L⊕ = L∗ − {idk} is the (Kleene) plus of L. Finally, the union L ∪ L′
of two graph languages L and L′ is defined only when type(L) = type(L′) (otherwise it
would not be a graph language). Thus, the operations of union, concatenation, and star
are also typed operations on graph languages (as opposed to the case of string languages
for which they are always defined). Let REX(∪, ◦,∗, SING) denote the smallest class of
graph languages containing the empty graph language and all singleton graph languages,
and closed under the operations union, concatenation, and star. Thus, it is the class of
all graph languages that can be denoted by (the usual) regular expressions, where the
symbols of the alphabet denote singleton graph languages. From this it should be clear
that it equals the class Int(REG) of interpretations of regular languages. In the proof one
has to cope with the “technical trouble” of typing, in particular with the empty string.
Note that, for a graph language L with type(L) = (k, k), L∗ = L⊕ ∪ {idk}; from this it
should be clear that REX(∪, ◦,∗, SING) = REX(∪, ◦,⊕, SING), which solves the problem
with the empty string.

Theorem 3 Int(REG) = REX(∪, ◦,∗, SING).

By Theorems 2 and 3, LIN-HR = REX(∪, ◦,∗, SING). This suggests that the class LIN-HR of
linear HR graph languages might be called the class of “regular” graph languages, because
they can be denoted by regular expressions. The above characterization still holds after
adding the sum operation (extended to graph languages in the usual way). This is because
of the following simple reason.

Lemma 4 If Int(K) is closed under concatenation, then it is closed under sum.

Proof. We first show that ifM is in Int(K) then so is M+{idk} for every k. Let M = h(L)
for some L ∈ K. Define h′(a) = h(a) + idk for every symbol a. Then h′(a1 · · ·an) =

(h(a1) + idk) ◦ · · · ◦ (h(an) + idk) = (h(a1) ◦ · · · ◦ h(an)) + (idk ◦ · · · ◦ idk)

because of strict monoidality, and the last expression equals h(a1 · · ·an) + idk. This
implies that h′(L) = h(L) + {idk} =M + {idk}. Similarly it can be shown that {idk} +M
is in Int(K).

Now, for arbitrary graph languagesM andM′ with type(M) = (m,n) and type(M′) =
(m′, n′), M +M′ = (M ◦ {idn}) + ({idm′} ◦M′) = (M + {idm′}) ◦ ({idn} +M′) by strict
monoidality. Now, by the above, and the fact that Int(K) is closed under ◦, M +M′ is in
Int(K). �

It turns out that, if we allow+ in our regular expressions, then we do not need all single-
ton graph languages to start with, but only a “small” number of them, with very simple
graphs only. In fact, graphs can be decomposed into very simple graphs, using concate-
nation and sum. Assume that the edge labels of our graphs are taken from a given set A.
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For a ∈ A let gr(a) be the graph of type (1,1) with two nodes x and y, an a-labeled edge
from x to y, begin(gr(a)) = 〈x〉, and end(gr(a)) = 〈y〉. For m,n ∈ N, let Em,n be the
graph of type (m,n) with one node x, no edges, begin(Em,n) = 〈x, . . . , x〉 (m times), and
end(Em,n) = 〈x, . . . , x〉 (n times). Finally, let X be the graph of type (2,2) with two nodes
x and y, no edges, begin(X) = 〈x, y〉, and end(X) = 〈y, x〉. Note also that id0 is the empty
graph. Now define the set of graphs C0 = {gr(a) | a ∈ A} ∪ {id0,X, E0,1, E1,0, E1,2, E2,1},
and let REX(∪, ◦,∗,+, SING(C0)) denote the smallest class of graph languages contain-
ing the empty graph language and all singleton graph languages with a graph from C0 as
element, and closed under the operations union, concatenation, star, and sum.

Theorem 5 REX(∪, ◦,∗, SING) = REX(∪, ◦,∗,+, SING(C0)).

From Theorem 2 we know that Int(REG) = LIN-HR. It is not difficult to prove that also
Int(LIN) = LIN-HR, where LIN is the (usual) class of languages generated by linear context-
free grammars. This suggests that for graph languages the notions “regular” and “linear”
coincide, as opposed to the string case. Even Int(DB) = LIN-HR, where DB is the class of
derivation bounded context-free languages. One now wonders how much larger the class
K can be made without getting a larger class Int(K).

It is easy to see that for every given class K there is always a largest class K′ such that
Int(K′) = Int(K). We will call this the extension of K, denoted Ext(K). In fact, Ext(K) =
{L | for every h : Σ→ GR with L ⊆ Σ∗, if h(L) is a graph language, then h(L) ∈ Int(K)}.
In the next theorem we give a characterization of Ext(K). For a class G of graph lan-
guages, let Str(G) denote the class of string languages L such that gr(L) is in G. Here,
gr(L) = {gr(w) | w ∈ L}, and, for a string w = a1 · · ·an, gr(w) is the graph of type
(1, 1) with nodes 1, . . . , n+1, an ai-labeled edge from i to i+1 for every 1 ≤ i ≤ n, begin
node 1, and end node n+1. Thus, gr(w) encodes w in the obvious way: it is a path with
the symbols of w as edge labels. Recall that we assume K to be closed under sequential
machine mappings.

Theorem 6 Ext(K) = Str(Int(K)).

In the proof of this theorem it has to be shown that Int(Str(Int(K))) = Int(K), and that
if Int(K′) = Int(K) then K′ ⊆ Str(Int(K)). The first statement is the most involved one
to show. The second statement is easy to see. In fact, gr(K′) ⊆ Int(K′): just take h(a) =
gr(a). Then we get K′ ⊆ Str(gr(K′)) ⊆ Str(Int(K′)) = Str(Int(K)).

As a corollary of Theorem 6 we obtain that for arbitrary K and K′, both closed under
sequential machine mappings, Int(K) = Int(K′) if and only if Str(Int(K)) = Str(Int(K′)).
This means that the graph generating power of K is completely determined by its string
generating power (with strings coded as graphs by the mapping gr).

Next we will aim at another characterization of Ext(K). First we consider controlled
linear HR grammars, in the obvious sense. Let G be a linear HR grammar with (finite) set
of productions P , and letC be a string language over P (where P is viewed as an alphabet).
The graph language generated by G under control C is the set of all graphs g for which
there is a derivation g0 ⇒p1 g1 ⇒p2 g2 · · · ⇒pn gn with gn = g, g0 is the axiom of G,
and such that the string p1p2 · · ·pn is in C. Of course, ⇒p denotes a derivation step of
G that uses production p ∈ P . Thus, the control language C specifies the sequences of
productions that the grammar G is allowed to use in its derivations.
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For a classK of string languages, we denote by LIN-HR(K) the class of graph languages
generated by linear HR grammars under a control language from K. Generalizing Theo-
rem 2 and its proof we obtain the next result.

Theorem 7 Int(K) = LIN-HR(K).

By 2DGSM(K) we denote the class of images of languages from K under 2dgsm map-
pings, i.e., 2DGSM(K) = {f (L) | f is a 2dgsm mapping and L ∈ K}. A 2dgsm (i.e., a two-
way deterministic generalized sequential machine) is a deterministic finite automaton
that can move in two directions on its input tape (with endmarkers), and outputs a (pos-
sibly empty) string at each step. Generalizing the proof in [6] that Str(LIN-HR) equals the
class of output languages of 2dgsm mappings, we prove the next result.

Theorem 8 Str(LIN-HR(K)) = 2DGSM(K).

Taking these (quite obvious) generalizations together, we obtain from Theorems 6, 7, and
8 our second characterization of the class Ext(K).

Theorem 9 Ext(K) = 2DGSM(K).

This characterization allows us to use known formal language theoretic results regarding
2DGSM(K) to investigate Int(K). In fact, quite a lot is known about the class 2DGSM(K),
see, e.g., [7]. As an example, it equals the class of languages generated by K-controlled
ETOL systems of finite index.

The other way around, we note that from Int(Str(Int(K))) = Int(K) follows that
Str(Int(Str(Int(K)))) = Str(Int(K)), i.e., the known result that 2DGSM(2DGSM(K)) =
2DGSM(K). This shows that Ext(K) is closed under 2dgsm mappings.

Thus, for K = REG, Ext(K) is the class 2DGSM(REG) of output languages of 2dgsm
mappings. Since it is well known that the class DB of derivation-bounded context-free
languages is contained in 2DGSM(REG) (see, e.g., [10]), this implies the previously men-
tioned result that Int(LIN) = Int(DB) = Int(REG). Also, since there is a context-free lan-
guage not in 2DGSM(REG), see [8, 7], Int(REG) is properly included in Int(CF), where CF
is the class of context-free languages. We finally note that Int(CF) is properly included in
HR, the class of graph languages generated by HR grammars. The inclusion follows from
the fact that context-free grammars generating graph expressions built from concatena-
tion and all constant graphs, can be simulated by HR grammars, by Theorem 1. Proper-
ness of the inclusion follows from the more general fact that for any class K, Int(K)
contains graph languages of bounded path-width only. Thus, the set of all binary trees
(which is in HR) does not belong to any Int(K).
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