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1 Introduction

1.1 Discrete-Time Process Algebras

Since [14] appeared, the ACP framework of process algebras has been extended with,
among many other things, discrete-time extensions. Papers describing such extensions
are for example [8, 10, 11].

With the recent appearance of [10, 13] discrete-time process algebra seems to have
reached a decent state of maturity, and we felt now was the time to write a paper about
the soundness and completeness issues involved with discrete time. To our knowledge,
no such results have been published in the context of ACP before. And although we never
really doubted the soundness and completeness of the respective theories, we felt that
it would not hurt to prove these beliefs explicitly. And rightly so: it turned out that the
axiomatizations we started out with were neither sound nor complete.

1.2 Soundness and Completeness

In this paper we will give elimination, soundness, and completeness results for several
discrete-time process algebras. We restrict ourselves to concrete process algebras (i.e.
without abstraction, without a silent step τ, and without an empty step ε), relative time,
closed terms (i.e. no ω-completeness), and mostly basic process algebras (i.e. without
merge operators). We do treat delayable actions and immediate deadlock.

In our definitions and notations we try to conform to [11, 13]. We use term deduction
system semantics in the style of Section 2.2.3 of [13].

In the proofs of elimination theorems we make abundant use of term rewriting analy-
sis. For further details on these techniques, especially the lexicographical path ordering,
see [19]. In proving completeness we sometimes make use of Verhoef’s General Com-
pleteness Theorem. For more information on this, see [25].

As the definitions and notations used for discrete-time process algebras have been
subject to vehement revision over the past few years, we have compiled an appendix that
tries to shed some light on these matters. Please study this Appendix A if you are not
completely familiar with discrete-time ACP. Then, in Appendix B, we give a concise sum-
mary of the most important results presented in this paper.

Finally, the actual theorems and proofs on soundness and completeness are given in
Section 2 (for process algebras that do not contain a merge operator) and Section 3 (for
the ones that do).
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2 Basic Process Algebras

2.1 Introduction

In this section we prove soundness and completeness for some discrete-time basic pro-
cess algebras, i.e. not containing a merge operator. But we start by giving soundness and
completeness theorems for two untimed basic process algebras, namely BPA and BPAδ.

The purpose of giving these results about untimed algebras is twofold. First we want
to show the principles our proof techniques are based on, and these simple process alge-
bras are more suited to this purpose than the timed versions that will follow. Secondly,
we felt that soundness and completeness proofs given in the literature are often a bit
twisted, and sometimes even plain wrong.

After these untimed basic process algebras, by adding the time-unit delay, we pro-
ceed to the most simple timed one: BPA−drt–δ. Then we add to this algebra undelayable
deadlock, delayable actions, and finally immediate deadlock. The section culminates in
soundness and correctness theorems for a basic process algebra that combines all the
above extensions at the same time: BPAdrt.

2.2 Soundness and Completeness of BPA

Remark 2.2.1 (Alphabet)
For this section, and all sections to come, we presume the existence of a fixed, finite al-
phabet A, that can be considered a parameter of the respective theories. Furthermore,
we define Aδ as A∪{δ} and Aσ as A∪{σ}, where δ and σ are still to be treated symbols
that are not contained in A.

Definition 2.2.2 (Signature of BPA)
The signature of BPA consists of the atomic actions {a|a ∈ A}, the alternative composition
operator +, and the sequential composition operator ·.

Remark 2.2.3 (Symbol versus atom)
Note that in Definition 2.2.2, in the expression {a|a ∈ A}, the second a refers to the sym-
bol a, while the first one refers to the atom a. This distinction should be clearly made,
and it can be considered a tragic historical incident that these different notions have re-
ceived the same notation.

Remark 2.2.4 (Range of a)
When we write “a” (or “b”, or “c”) in the context of an equality or a partial ordering, we
mean this a to range over Aδ (provided, of course, deadlock is part of the relevant sig-
nature). When we write it in the context of a deduction rule, we mean it to range over A.
In all other cases, or when we deviate from the above rule, we explicitly state whether it
ranges over A or Aδ.

Definition 2.2.5 (Operator precedence)
Throughout this paper we adhere to the following operator precedence scheme, which
consist of four categories of operators. The four categories, from strongly binding to
weakly binding, are:

(i). all unary operators,
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(ii). the sequential composition operator “·”,

(iii). all binary operators, except the “+” and the “·”,

(iv). the alternative composition operator “+”.

Within one category, all operators bind equally strong.

Definition 2.2.6 (Axioms of BPA)
The process algebra BPA is axiomatized by Axioms A1–A5 shown in Table 1: BPA = A1–
A5.

x+ y = y + x A1

(x+ y) + z = x+ (y+ z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

Table 1: Axioms of BPA.

Definition 2.2.7 (Notation Regarding Semantics I)
In order to define a semantics, we will use term deduction system semantics in the style
of Section 2.2.3 of [13] (also called “Structured Operational Semantics” or “Plotkin-style
semantics”). We use the notation x a→ x′ to denote that x can do an a-step to x′, x a→√ to
denote that x can do an a-step and then terminate, x a

3 to denote that x cannot do an
a-step, and x3 to denote that x cannot do any step at all.

For each process algebra we define, we will give a term deduction system. By using
the concept of bisimulation (to be defined in Definition 2.2.10 on the following page), we
then turn the term deduction system into a model of the given axioms.

Definition 2.2.8 (Semantics of BPA)
The semantics of BPA are given by the term deduction system T(BPA) induced by the
deduction rules given in Table 2 and Table 3 on the following page.

a a→√

Table 2: Deduction rule for a.
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x a→ x′
x+ y a→ x′

x a→√

x+ y a→√
x a→ x′

x · y a→ x′ · y
y a→ y′
x+ y a→ y′

y a→√

x+ y a→√
x a→√

x · y a→ y

Table 3: Deduction rules for + and ·.

Definition 2.2.9 (Symmetric Closure)
For a binary relation R, we denote its symmetric closure by RS:

RS = R ∪ {(y, x)|(x, y) ∈ R}

Definition 2.2.10 (Bisimulation for BPA)
Bisimulation for BPA is defined as follows; a binary relation R on closed BPA terms is a
bisimulation if the following transfer conditions hold for all closed BPA terms p and q:

(i). If RS(p, q) and T(BPA) î p a→ p′, where a ∈ A, then there exists a closed term q′,
such that T(BPA) î q a→ q′ and RS(p′, q′),

(ii). If RS(p, q) and T(BPA) î p a→√, where a ∈ A, then T(BPA) î q a→√.

Two BPA terms p and q are called bisimilar, notationp ∼BPA q, if there exists a bisimulation
relation R such that R(p, q).

Definition 2.2.11 (Bisimulation Model for BPA)
Using bisimulation, we can now construct a model of the axioms of BPA. In order to do
this, we first need to know that bisimulation is a congruence with respect to all operators.
In [24] it is proven that a sufficient condition for this is that the deduction rules satisfy
the so called panth format. It is easy to check that this is indeed the case.

We then construct the bisimulation model for BPA by taking the equivalence classes of
the set of all closed BPA terms with respect to bisimulation equivalence. As bisimulation
is a congruence, the operators can be trivially defined on the equivalence classes. For
example for the + operator:

[x] ∼BPA + [y] ∼BPA = [x+ y] ∼BPA

Here [x] ∼BPA denotes the equivalence class of x with respect to the equivalence rela-
tion ∼BPA . The other operators are defined similarly.

Definition 2.2.12 (Basic Terms of BPA)
We define basic terms inductively as follows:

(i). Every a ∈ A is a basic term,

(ii). if a ∈ A and t is a basic term, then a · t is a basic term,

(iii). if t and s are basic terms, then t + s is a basic term.
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Definition 2.2.13 (Number of Symbols of a BPA Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ A, we define n(a) = 1,

(ii). for closed BPA terms x and y, we define n(x+ y) = n(x · y) = n(x) + n(y) + 1.

Definition 2.2.14 (Closed Terms of BPA)
We denote the set of all closed terms (i.e. terms not containing free variables) of BPA by
C(BPA). This notation extends as expected to other theories.

Remark 2.2.15 (Results from [13])
In [13] several results are given about elimination, soundness, and completeness with
respect to BPA and BPA with some extensions. We will not repeat the proofs given for
those results here, but instead refer to that article.

One might object that the proofs of [13] are often very sketchy (“Easy by induction.”),
and sometimes even incorrect (see for example Remark 2.4.18 on page 22 of our paper).
Nevertheless, we felt that no useful purpose would be served by writing out those sketchy
proofs in full here, as in a sense they are encompassed by the proofs regarding BPA−drt–ID
(to be treated in Section 2.5), which we do give in full.

Proposition 2.2.16 (Elimination for BPA)
Let t be a closed BPA term. Then there is a basic term s such that BPA ` t = s.
Proof This is Proposition 2.2.5 of [13]. See the proof given there. �

Theorem 2.2.17 (Soundness of BPA)
The set of closed BPA terms modulo bisimulation equivalence is a model of BPA.

Proof This is Theorem 2.2.33 of [13]. See the proof given there. �

Remark 2.2.18 (Proving Completeness using the Direct Method)
All completeness proofs regarding basic process algebras (i.e., all completeness proofs
in Section 2) follow the same scheme, which we will outline in this remark in some detail,
so we do not have to go over these details again and again in the actual proofs.

To prove completeness of process theory P, we first derive an auxiliary lemma “To-
wards Completeness of P” (see for example Lemma 2.2.19 on the following page) that
contains sublemmata of the general form:

T(P) î . . . =⇒ P ` . . .
Typically, each sublemma relates a certain transition in the term deduction system of P
with a certain equality in P (some sublemmata slightly deviate from this format).

Armed with the implications proven in the “Towards...” lemma, we then set out to
actually prove completeness (see for example Theorem 2.2.22 on page 11). This is done,
using Lemma 2.2.20 on the following page, by proving that for all basic terms x and y of
P we have that:

x+ y ∼P y =⇒ P ` x+ y = y.
This part of the proof is done by induction on the number of symbols in x, using case
distinction on the form of (basic term) x. The “Towards...” sublemmata are chosen in
such a way that each case we encounter in completing our proof is now easily handled.

The proof method outlined in this remark is taken from [13].
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Lemma 2.2.19 (Towards Completeness of BPA)
Let x and y be closed BPA terms. Then we have:

(i). T(BPA) î x a→√ =⇒ BPA ` x = a+ x,
(ii). T(BPA) î x a→ y =⇒ BPA ` x = a · y + x,
(iii). T(BPA) î x a→ y =⇒ n(x) > n(y).

Proof For part (i) and (ii) we assume, by Proposition 2.2.16 and Theorem 2.2.17, with-
out loss of generality, that x is a basic term, and then apply induction on the structure
of basic terms. For part (iii) this does not work, as bisimulation obviously is not a con-
gruence for n(x). Therefore, in proving (iii) we use induction on the general structure of
terms.

(i). Case 1: x is an atomic action. Because T(BPA) î x a→√, it must then be the case that
x ≡ a. So we have BPA ` x = a = a+a = a+x. Case 2: x is of the form atomic action
followed by another basic term. This is in contradiction with T(BPA) î x a→√, so
this case does not occur. Case 3: x is of the form s+ t, where s and t are again basic
terms. As T(BPA) î s + t a→√, necessarily T(BPA) î s a→√ or T(BPA) î t a→√.
Therefore, by the induction hypothesis, BPA ` s = a + s or BPA ` t = a + t. But
then in both cases BPA ` x = s + t = a+ s + t = a+ x.

(ii). Case 1: x is an atomic action. This is in contradiction with T(BPA) î x a→ y, so this
case does not occur. Case 2: x is of the form atomic action followed by another
basic term. Then, because T(BPA) î x a→ y, it must be that x ≡ a · y. So, BPA ` x =
a ·y = a ·y+a ·y = a ·y+x. Case 3: x is of the form s+ t, where s and t are again
basic terms. As T(BPA) î s+ t a→ y, necessarily T(BPA) î s a→ y or T(BPA) î t a→ y.
Therefore, by the induction hypothesis, BPA ` s = a · y + s or BPA ` t = a · y + t.
So in both cases BPA ` x = s + t = a · y + s + t = a · y + x.

(iii). Case 1: x is an atomic action. This is in contradiction with T(BPA) î x a→ y, so
this case does not occur. Case 2: x is of the form s · t, for certain terms s and t.
Then, by T(BPA) î x a→ y, we either have T(BPA) î s a→√ and y ≡ t, or we have
T(BPA) î s a→ s′ and y ≡ s′ · t for some term s′. In the first case, we have n(x) =
n(s·t) = n(s)+n(t)+1 > n(t) = n(y), and in the second we can apply the induction
hypothesis to arrive at n(s) > n(s′), so we get n(x) = n(s · t) = n(s) + n(t) + 1 >
n(s′)+n(t)+1 = n(s′·t) = n(y). Case 3: x is of the form s+t, for certain terms s and
t. As T(BPA) î s+t a→ y, necessarily T(BPA) î s a→ y or T(BPA) î t a→ y. Therefore,
by the induction hypothesis, n(s) > n(y) or n(t) > n(y). As n ranges over the
positive naturals only, in both cases n(x) = n(s + t) = n(s) + n(t) + 1 > n(y).

�

Lemma 2.2.20 (Towards Completeness of BPA)
In order to prove for all BPA terms x and y that:

x ∼BPA y =⇒ BPA ` x = y (∗)

it is sufficient to prove that:

x+ y ∼BPA y =⇒ BPA ` x+ y = y. (†)
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Proof Assume (†) and the left-hand side of (∗) to hold. Then prove the right-hand
side of (∗). This is done as follows: by Theorem 2.2.17, the fact that ∼BPA is a congruence,
and Axiom A3, for all bisimilar BPA terms x and y we have x + y ∼BPA y + y ∼BPA y and
y + x ∼BPA x+ x ∼BPA x. Therefore, by (†), also BPA ` x+ y = y and BPA ` y + x = x. But
that gives us: BPA ` x = y + x = x+ y = y. �

Corollary 2.2.21 (Generalization of Lemma 2.2.20)
Lemma 2.2.20 generalizes from BPA to any equational process theory P with correspond-
ing term deduction system T(P), provided:

(i). P is a sound axiomatization of T(P),

(ii). ∼P is a congruence for the function symbols from the signature of P, and,

(iii). P contains the axioms of BPA.

Proof As the proof of Lemma 2.2.20 only depends on the soundness of BPA with
respect to T(BPA), the fact that ∼P is a congruence for P, and the axioms of BPA, the
proof is trivially valid for P too. �

Theorem 2.2.22 (Completeness of BPA)
The axiom system BPA is a complete axiomatization of the set of closed BPA terms modulo
bisimulation equivalence.

Proof Let x and y be bisimilar closed BPA terms. We have to prove that BPA ` x = y.
With the aid of Proposition 2.2.16 and Theorem 2.2.17, it is enough to prove this for basic
terms. By Lemma 2.2.20 it is even enough to prove for all basic terms x and y that:

x+ y ∼BPA y =⇒ BPA ` x+ y = y.

We will prove this by induction on n(x), using 2.2.19(iii) and case distinction on the form
of basic term x. Case 1: x is of the form a, for a ∈ A. Then T(BPA) î x a→√, so T(BPA) î
x+y a→√, and because x+y ∼BPA y we have T(BPA) î y a→√, so with Lemma 2.2.19(i) we
find that BPA ` x+y = y. This proves the basis of our induction. Case 2: x is of the form
a · s, where a ∈ A, and s again a basic BPA term. Then T(BPA) î x a→ s, and therefore
T(BPA) î x + y a→ s, so because x + y ∼BPA y there is an s′ with T(BPA) î y a→ s′ and
s ∼BPA s′. But then by Theorem 2.2.17 and Axiom A3 also s+ s′ ∼BPA s′ and s′ + s ∼BPA s and
with induction (note that n(s) < n(x)) we find BPA ` s + s′ = s′ and BPA ` s′ + s = s.
So BPA ` s = s′. Now BPA ` x + y = a · s + y = a · s′ + y = y with Lemma 2.2.19(ii).
Case 3: x is of the form s + t, for certain basic BPA terms s and t. Since x+ y ∼BPA y, we
also have s+ y ∼BPA y and t + y ∼BPA y. By induction BPA ` s+ y = y and BPA ` t + y = y.
So BPA ` x+ y = s + t + y = s + y = y. �

2.3 Soundness and Completeness of BPAδ

Definition 2.3.1 (Signature of BPAδ)
The signature of BPAδ consists of the atomic actions {a|a ∈ A}, the deadlock constant δ,
the alternative composition operator +, and the sequential composition operator ·.
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x+ δ = x A6

δ · x = δ A7

Table 4: Axioms for δ.

Definition 2.3.2 (Axioms of BPAδ)
The process algebra BPAδ is axiomatized by the axioms of BPA given in Definition 2.2.6
on page 7 and Axioms A6–A7 shown in Table 4: BPAδ = A1–A7.

Remark 2.3.3 (Axiom A6 versus Axiom A6A)
Note that in the presence of the other axioms of BPA, Axiom A6 given in Table 4 is equiva-
lent, for closed BPAδ terms, with Axiom A6A given in Table 5. Therefore we could replace
A6 in BPA by A6A without affecting the soundness or completeness of the resulting the-
ory.

One such reason to do so, could be the fact that A6A remains valid in all discrete-
time process algebras we will describe, whereas A6 does not. Still, for historical reasons,
we prefer A6 to be used in the definition of BPAδ. We will later return to this subject in
Remark 2.5.3 on page 22 and Remark 2.7.3 on page 45.

a+ δ = a A6A

Table 5: Alternative for Axiom A6.

Definition 2.3.4 (Semantics of BPAδ)
The semantics of BPAδ are given by the term deduction system T(BPAδ) induced by the
deduction rules given in Table 2 on page 7 and Table 3 on page 8.

Note that this term deduction system T(BPAδ) is practically identical to the term de-
duction system T(BPA) given in Definition 2.2.8 on page 7, as there are no deduction
rules for δ. However, T(BPAδ) does differ from T(BPA) in the fact that it contains the
symbol δ in its signature.

Definition 2.3.5 (Bisimulation and Bisimulation Model for BPAδ)
Bisimulation for BPAδ and the corresponding bisimulation model are defined in the same
way as for BPA. Replace “BPA” by “BPAδ” in Definition 2.2.10 on page 8 and Defini-
tion 2.2.11 on page 8.

Definition 2.3.6 (Basic Terms of BPAδ)
We define δ-basic terms inductively as follows:

(i). Every a ∈ Aδ is a δ-basic term,
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(ii). if a ∈ Aδ and t is a δ-basic term, then a · t is a δ-basic term,

(iii). if t and s are δ-basic terms, then t + s is a δ-basic term.

From now on, if we speak of basic terms in the context of BPAδ, we mean δ-basic terms.

Remark 2.3.7 (Definition of Basic Terms)
Usually the basic terms of BPAδ are defined a bit differently with respect to deadlock:
δ · t for some basic term t is usually not considered basic. We chose to deviate from
established practice because it made our proofs quite a bit shorter. The reason is that in
this way we get rid of a nasty case distinction that would otherwise have popped up in
just about every other line of our proofs.

Definition 2.3.8 (Number of Symbols of a BPAδ Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed BPAδ terms x and y, we define n(x+ y) = n(x · y) = n(x) + n(y) + 1.

Proposition 2.3.9 (Elimination for BPAδ)
Let t be a closed BPAδ term. Then there is a basic term s such that BPAδ ` t = s.
Proof This is Proposition 2.5.3 of [13], see the proof given there. Note that although
[13] uses a slightly different definition of basic terms, their definition is narrower, so their
elimination result also holds for our definition of basic terms. �

Theorem 2.3.10 (Soundness of BPAδ)
The set of closed BPAδ terms modulo bisimulation equivalence is a model of BPAδ.

Proof This is Theorem 2.5.4 of [13]. See the proof given there. �

Theorem 2.3.11 (Completeness of BPAδ)
The axiom system BPAδ is a complete axiomatization of the set of closed BPAδ terms mod-
ulo bisimulation equivalence.

Proof Since there are no transitions for the new constant δ, this is proven in the same
way as Theorem 2.2.22. �

2.4 Soundness and Completeness of BPA−drt–δ

Definition 2.4.1 (Signature of BPA−drt–δ)
The signature of BPA−drt–δ consists of the undelayable atomic actions {a|a ∈ A}, the alter-
native composition operator +, the sequential composition operator ·, and the time unit
delay operator σrel.

Definition 2.4.2 (Axioms of BPA−drt–δ)
The process algebra BPA−drt–δ is axiomatized by the axioms of BPA given in Defini-
tion 2.2.6 on page 7 and Axioms DRT1–DRT2 shown in Table 6 on the next page: BPA−drt–δ
= A1–A5 + DRT1–DRT2.
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σrel(x) + σrel(y) = σrel(x+ y) DRT1

σrel(x) · y = σrel(x · y) DRT2

Table 6: Axioms for σrel.

Definition 2.4.3 (Notation Regarding Semantics II)
Next to the deduction rule notations x a→ x′, x a→√, and x a

3 , and x3 introduced in Defi-
nition 2.2.7 on page 7, we now also use x σ→ x′ to denote that x can do a σ-step to x′ (i.e.,
move to the following time-slice and become x′), and x σ3 to denote that x cannot do an
σ-step.

Definition 2.4.4 (Semantics of BPA−drt–δ)
The semantics of BPA−drt–δ are given by the term deduction system T(BPA−drt–δ) induced
by the deduction rules given in Table 3 on page 8 and Table 7.

a a→√ σrel(x)
σ→ x x σ→ x′

x · y σ→ x′ · y
x σ→ x′, y σ→ y′
x+ y σ→ x′ + y′

x σ→ x′, y σ
3

x+ y σ→ x′
x σ3 , y σ→ y′
x+ y σ→ y′

Table 7: Deduction rules for a and σrel.

Definition 2.4.5 (Bisimulation for BPA−drt–δ)
Bisimulation for BPA−drt–δ is defined as follows; a binary relation R on closed BPA−drt–δ
terms is a bisimulation if the following transfer conditions hold for all closed BPA−drt–δ
terms p and q:

(i). If RS(p,q) and T(BPA−drt–δ) î p
a→ p′, where a ∈ A, then there exists a closed term

q′, such that T(BPA−drt–δ) î q
a→ q′ and RS(p′, q′),

(ii). If RS(p, q) and T(BPA−drt–δ) î p σ→ p′, then there exists a closed term q′, such that
T(BPA−drt–δ) î q σ→ q′ and RS(p′, q′),

(iii). If RS(p, q) and T(BPA−drt–δ) î p
a→√, where a ∈ A, then T(BPA−drt–δ) î q

a→√.

Two BPA−drt–δ terms p and q are bisimilar, notation p ∼BPA−drt–δ q, if there exists a bisimula-
tion relation R such that R(p, q).

Definition 2.4.6 (Bisimulation Model for BPA−drt–δ)
The bisimulation model for BPA−drt–δ is defined in the same way as for BPA. Replace “BPA”
by “BPA−drt–δ” in Definition 2.2.11 on page 8.
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Definition 2.4.7 (Basic Terms of BPA−drt–δ)
We define σ-basic terms inductively as follows:

(i). For every a ∈ A, the atomic action a is a σ-basic term,

(ii). if a ∈ A and t is a σ-basic term, then a · t is a σ-basic term,

(iii). if t and s are σ-basic terms, then t + s is a σ-basic term,

(iv). if t is a basic term, then σrel(t) is a σ-basic term.

From now on, if we speak of basic terms in the context of BPA−drt–δ, we mean σ-basic
terms.

Definition 2.4.8 (Number of Symbols of a BPA−drt–δ Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ A, we define n(a) = 1,

(ii). for closed BPA−drt–δ terms x and y, we define n(x+y) = n(x · y) = n(x)+n(y)+ 1,

(iii). for a closed BPA−drt–δ term x, we define n(σrel(x)) = n(x) + 1.

Definition 2.4.9 (Symbol for a Chain of σ ’s)
We will write x

σ=⇒y to indicate that x can reach y by doing zero or more σ-transitions.
Formally:

σ=⇒ denotes the transitive, reflexive closure of
σ→ .

Remark 2.4.10 (Proving Elimination using Term Rewriting Analysis)
To prove elimination we will use, where possible, a method that is based on term rewrit-
ing analysis. This method works by associating a term rewriting system to an equational
specification, and then proving that this term rewriting system is strongly normalizing
and its normal forms are basic terms. See Theorem 2.4.11 for an example of this method.

Theorem 2.4.11 (Elimination for BPA−drt–δ)
Let t be a closed BPA−drt–δ term. Then there is a basic term s such that BPA−drt–δ ` s = t.
Proof This theorem is proven as follows. First a number of axioms of BPA−drt–δ are
selected, and subsequently oriented as rewriting rules. This gives us a term rewriting
system. Then it is proven that this term rewriting system is strongly normalizing and
that every normal form of a closed BPA−drt–δ term is a basic term. In this way a recipe is
obtained for transforming a closed BPA−drt–δ term into a basic term.

The rewriting rules of the term rewriting system for BPA−drt–δ are given in Table 8 on
the next page. The proof that this term rewriting system is strongly normalizing uses
the method of the lexicographical path ordering.

The well-founded ordering > on constants and function symbols is the following:

· > + > σrel > a

To · we assign the lexicographical status for the first argument. Now we show that the
left-hand side of every rewriting rule is bigger than the right-hand side with respect to
the ordering �lpo . This is done by the following reductions (taken from [13]):

(x+ y) · z �lpo (x+ y) ·? z�lpo (x+ y) ·? z + (x+ y) ·? z �lpo (x+? y) · z+ (x+? y) · z
�lpo x · z + y · z
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(x+ y) · z → x · z + y · z RA4

(x · y) · z → x · (y · z) RA5

σrel(x) · y → σrel(x · y) RDRT2

Table 8: Term Rewriting System for BPA−drt–δ.

(x · y) · z �lpo (x · y) ·? z�lpo (x ·? y) · ((x · y) ·? z) �lpo x · ((x ·? y) · z)
�lpo x · (y · z)

σrel(x) · y �lpo σrel(x) ·? y �lpo σrel(σrel(x) ·? y) �lpo σrel(σ?rel(x) · y)
�lpo σrel(x · y)

Next, we will prove that the normal forms of the closed BPA−drt–δ terms are basic terms.
Thereto, suppose that s is a normal form of some closed BPA−drt–δ term. Furthermore,
suppose that s is not a basic term. Let s′ denote the smallest subterm of s which is not a
basic term. Note that, consequently, all proper subterms of s′ are basic terms. Then we
can prove that s′ is not a normal form by case analysis. We distinguish all possible cases:

(i). s′ is an atomic action. But then s′ is a basic term. This is in contradiction with the
assumption that s′ is not a basic term, so this case does not occur.

(ii). s′ is of the form s′1 ·s′2 for basic terms s′1 and s′2. With case analysis on the structure
of basic term s′1:

(a) If s′1 is an atomic action a then s′1 · s′2 is a basic term, and so s′ is a basic term
which again contradicts the assumption that s′ is not a basic term. This case
can therefore not occur.

(b) If s′1 is of the form a·t for some atomic action a and basic term t, then rewriting
rule RA5 can be applied. So, s′ is not a normal form.

(c) If s′1 is of the form t1+ t2 for t1 and t2 basic terms. Then rewriting rule RA4 is
applicable. Therefore, s′ is not a normal form.

(d) If s′1 is of the form σrel(t) for some basic term t. Then rewriting rule RDRT2 is
applicable. So, s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. In this case s′ would be a basic
term, which contradicts the assumption that s′ is not a basic term. Therefore, this
case cannot occur.

(iv). s′ is of the form σrel(s′′) for some basic term s′′. But then s′ is basic term too, so
the case does not occur.

In any case that can occur it follows that s′ is not a normal form. Since s′ is a subterm of
s, we conclude that s is not a normal form. This contradicts the assumption that s is a
normal form. From this contradiction we conclude that s is a basic term, which completes
the proof. �
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Remark 2.4.12 (Elimination for BPA−drt–δ)
Elimination for BPA−drt–δ is also claimed (without proof) in Theorem 2.12.3 of [13] (where
BPA−drt–δ is called BPAdt).

Remark 2.4.13 (Proving Soundness using the Direct Method)
Most of the soundness proofs given in this paper follow the same scheme, which we will
outline in this remark in some detail, so we do not have to go over these details again
and again in the actual proofs.

To prove the soundness of a certain axiom of the general form

tl(x1, . . . , xn) = tr (x1, . . . , xn)

where tl and tr are process expressions in the free variables x1, . . . , xn for some n ≥ 0,
with respect to some bisimulation model, we proceed as follows. First, we give a rela-
tion R, which will be a binary relation on closed terms. Then, we show that this R is a
bisimulation relation that for all closed instantiations of x1, . . . , xn relates the left-hand
and right-hand side of the axiom. This involves two steps:

(i). R should relate both sides of the axiom for all closed terms, i.e., for all closed in-
stantiations of x1, . . . , xn we should have that

(tl(x1, . . . , xn), tr(x1, . . . , xn)) ∈ R.

This is mostly so trivial that we do not mention it at all.

(ii). R should be a bisimulation. In order to prove that, we show that for all closed terms
s, t in the relation the transfer conditions from the definition of bisimulation are
satisfied.

For example, in proving soundness of an axiom of BPA−drt–δ, we have to show that
for all closed term s, t such that (s, t) ∈ R, we have that for any transition s u→ s′
(where u ∈ Aσ ), there is a corresponding transition t u→ t′ such that (s′, t′) ∈ R, and
vice versa, for any transition t u→ t′, there is a corresponding transition s u→ s′ such
that again (s′, t′) ∈ R. This part of the proof is done using case distinction on the
different kinds of steps that are possible (an action, a time step, termination).

Note that the “vice versa” part of proof obligation (ii) results from the fact that the trans-
fer conditions for bisimulation (see for example Definition 2.4.5 on page 14) are defined
with respect to the symmetric closure of R.

This completes the general outline of our soundness proofs. In the actual proofs we
will sometimes slightly deviate from it, for example because we re-use an earlier proof,
or because we do not faithfully list the too trivial proof obligations. The above described
general outline will however remain visible in the background. Finally, note that in sound-
ness proofs we do not explicitly indicate the term reduction system in which a transition
occurs; so instead of T(BPA−drt–δ) î x a→ y, we simply write x a→ y. This is no problem, as
the theory in which we are working is always clear.

The proof method outlined in this remark is taken from [13].

Theorem 2.4.14 (Soundness of BPA−drt–δ)
The set of closed BPA−drt–δ terms modulo bisimulation equivalence is a model of BPA−drt–δ.
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Proof Since bisimulation equivalence is a congruence (see for example Theorem
2.2.32 of [13]), also for the new operators, we only need to verify the soundness of every
closed instantiation of the axioms. We do this by giving a relation R for every axiom and
we prove that this relation is a bisimulation relation for every closed instantiation of the
left-hand and right-hand sides of the axiom.

In the setting of BPA soundness of Axioms A1–A5 has already been proven (see for
example Theorem 2.2.33 of [13]).

The theory BPA−drt–δ adds to this the possibility to perform σ-transitions. However,
any term headed by the operator added to BPA is not capable of performing a transition
labeled by an atomic action. So, we argue that the left-hand side and the right-hand side
of Axioms A1–A5 can perform exactly the same transitions labeled by an atomic action
in the theory BPA−drt–δ as in the theory BPA. Therefore, we only consider the transitions
labeled by σ for Axioms A1–A5. For Axioms DRT1–DRT2 we, of course, have to consider
both the transitions labeled by an atomic action and the transitions labeled by a σ .

Finally, note that BPA−drt–δ contains atomic actions of the form a whereas BPA had
actions of the form a. This is however not relevant for the purpose of extending the
soundness proofs of Axioms A1–A5 from BPA to BPA−drt–δ, as neither a nor a appears in
Axioms A1–A5, and both have exactly the same deduction rules (see Table 2 on page 7
and Table 7 on page 14).

Axiom A1 Take the relation:

R = {(s, s), (s + t, t + s)∣∣s, t ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose s + t σ→ p. Then one
of the following situations occurs:

(i). s σ→ p and t σ3 : then also t + s σ→ p, and note that (p,p) ∈ R.

(ii). s σ3 and t σ→ p: then also t + s σ→ p, and note that (p,p) ∈ R.

(iii). s σ→ p1 and t σ→ p2 and p ≡ p1 + p2: then t + s σ→ p2 + p1, and note that (p1 +
p2, p2 + p1) ∈ R.

The proof for the right-hand side is analogous.

Axiom A2 Take the relation:

R = {(s, s), ((s + t) + u, s + (t + u))∣∣s, t, u ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose (s+ t)+u σ→ p. Then
one of the following situations occurs:

(i). s + t σ→ p and u σ
3 : then the transition s + t σ→ p must be due to one of the

following:

(a) s σ→ p and t σ3 : in that case s σ→ p and t+u σ
3 . So, s+ (t+u) σ→ p, and note

that (p,p) ∈ R.

(b) s σ3 and t σ→ p: in that case s σ3 and t + u σ→ p. Therefore, s + (t + u) σ→ p.

(c) s σ→ p1 and t σ→ p2 and p ≡ p1+p2: in that case s σ→ p1 and t+u σ→ p2. There-
fore, s + (t + u) σ→ p1 + p2, and note that (p,p) ∈ R.

18



(ii). s+ t σ3 and u σ→ p: then s σ3 , t σ3 , and u σ→ p. So, s σ3 and t+u σ→ p. Therefore,
s + (t + u) σ→ p, and note that (p,p) ∈ R.

(iii). s + t σ→ p1 and u σ→ p2 and p ≡ p1 + p2: then the transition s + t σ→ p1 must be
due to one of the following:

(a) s σ→ p1 and t σ3 : in that case s σ→ p1 and t+u σ→ p2. So, s+(t+u) σ→ p1+p2,
and note that (p,p) ∈ R.

(b) s σ3 and t σ→ p1: in that case s σ3 and t + u σ→ p1 + p2. Therefore, s + (t +
u) σ→ p1 + p2, and note that (p,p) ∈ R.

(c) s σ→ q1 and t σ→ q2 and p1 ≡ q1+q2: in that case s σ→ q1 and t+u σ→ q2+p2.
Therefore, s+ (t +u) σ→ q1 + (q2+p2), and note that ((q1+ q2) +p2, q1+
(q2 + p2)) ∈ R.

The proof for the right-hand side is analogous.

Axiom A3 Take the relation:

R = {(s, s), (s + s, s)∣∣s ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose s+s σ→ p. Then s σ→ p′
and p ≡ p′ + p′. Then s σ→ p′, and note that (p′ + p′, p′) ∈ R.

The proof for the right-hand side is analogous.

Axiom A4 Take the relation:

R = {(s, s), ((s + t) · u, s · u + t · u)∣∣s, t, u ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose (s+ t) · u σ→ p. Then
s+t σ→ p′ and p ≡ p′·u. The transition s+t σ→ p′ must be due to one of the following:

(i). s σ→ p′ and t σ3 : then s · u + t · u σ→ p′ · u, and note that (p,p) ∈ R.

(ii). s σ3 and t σ→ p′: analogous to the previous case.

(iii). s σ→ p1 and t σ→ p2 and p′ ≡ p1 + p2: then s · u + t · u σ→ p1 · u+ p2 · u, and note
that ((p1 + p2) · u,p1 · u + p2 · u) ∈ R.

Secondly, we look at the transitions of the right-hand side. Suppose s ·u+ t ·u σ→ p.
This must be due to one of the following:

(i). s·u σ→ p and t·u σ
3 : then s σ→ p′ and p ≡ p′·u. Also t σ3 . Therefore, (s+t) σ→ p′

and (s + t) · u σ→ p′ · u, and note that (p,p) ∈ R.

(ii). s · u σ
3 and t · u σ→ p: analogous to the previous case.

(iii). s ·u σ→ p1 and t ·u σ→ p2 and p ≡ p1+p2: then s σ→ q1 and p1 ≡ q1 ·u and t σ→ q2

and p2 ≡ q2 ·u. Therefore, (s+ t) σ→ q1+q2 and (s+ t) ·u σ→ (q1+q2) ·u, and
note that ((q1 + q2) · u, q1 · u + q2 · u) ∈ R.

Axiom A5 Take the relation:

R = {(s, s), ((s · t) · u, s · (t · u))∣∣s, t, u ∈ C(BPA−drt–δ)
}
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First we look at the transitions of the left-hand side. Suppose (s · t) · u σ→ p. Then
this must be due to s σ→ p′ and p ≡ (p′ · t) · u. So, s · (t · u) σ→ p′ · (t · u), and note
that ((p′ · t) · u,p′ · (t · u)) ∈ R.

The proof for the right-hand side is analogous.

Axiom DRT1 Take the relation:

R = {(s, s), (σrel(s) + σrel(t),σrel(s + t))
∣∣s, t ∈ C(BPA−drt–δ)

}
We look at the transitions of both sides at the same time. First, note that σrel(s) +
σrel(t)

a
3 and σrel(s + t) a3 . Secondly, σrel(s) + σrel(t)

σ→ p iff p ≡ s + t iff σrel(s +
t) σ→ p, and note that (p,p) ∈ R.

Axiom DRT2 Take the relation:

R = {(s, s), (σrel(s) · t, σrel(s · t))
∣∣s, t ∈ C(BPA−drt–δ)

}
We look at the transitions of both sides at the same time. First, note thatσrel(s)·t a3
and σrel(s · t) a3 . Secondly, σrel(s) · t σ→ p iff p ≡ s · t iff σrel(s · t) σ→ p, and note
that (p,p) ∈ R.

�

Remark 2.4.15 (Soundness of BPA−drt–δ)
Soundness of BPA−drt–δ is also claimed (without proof) in Theorem 2.12.4 of [13] (where
BPA−drt–δ is called BPAdt).

Lemma 2.4.16 (Towards Completeness of BPA−drt–δ)
Let x and y be closed BPA−drt–δ terms. Then we have:

(i). T(BPA−drt–δ) î x a→√ =⇒ BPA−drt–δ ` x = a+ x,
(ii). T(BPA−drt–δ) î x a→ y =⇒ BPA−drt–δ ` x = a · y + x,
(iii). T(BPA−drt–δ) î x

σ→ y =⇒ BPA−drt–δ ` x = σrel(y) + x,
(iv). T(BPA−drt–δ) î x a→ y =⇒ n(x) > n(y),

(v). T(BPA−drt–δ) î x σ→ y =⇒ n(x) > n(y).

Proof For part (i), (ii), and (iii) we assume, by Theorem 2.4.11 and Theorem 2.4.14,
without loss of generality, that x is a basic term, and apply induction on the structure of
basic terms. For part (iv) and (v) we again have to use induction on the general structure
of terms.

(i). Case 1: x is an atomic action. Because T(BPA−drt–δ) î x
a→√, it must then be the

case that x ≡ a. So we have BPA−drt–δ ` x = a = a + a = a + x. Case 2: x is
of the form atomic action followed by another basic term. This is in contradiction
with T(BPA−drt–δ) î x a→√, so this case does not occur. Case 3: x is of the form
s + t, where s and t are again basic terms. As T(BPA−drt–δ) î s + t a→

√
, necessar-

ily T(BPA−drt–δ) î s a→
√

or T(BPA−drt–δ) î t a→
√

. Therefore, by the induction hy-
pothesis, BPA−drt–δ ` s = a + s or BPA−drt–δ ` t = a + t. But then in both cases
BPA−drt–δ ` x = s + t = a + s + t = a + x. Case 4: x is of the form σrel(s) for some
basic term s. As we know that T(BPA−drt–δ) î x a→√, this case cannot occur.
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(ii). Case 1: x is an atomic action. This is in contradiction with T(BPA−drt–δ) î x a→ y,
so this case does not occur. Case 2: x is of the form atomic action followed by
another basic term. Then, because T(BPA−drt–δ) î x a→ y, it must be that x ≡ a·y. So,
BPA−drt–δ ` x = a·y = a·y+a·y = a·y+x. Case 3: x is of the form s+t, where s and t
are again basic terms. As T(BPA−drt–δ) î s+ t

a→ y, necessarily T(BPA−drt–δ) î s
a→ y

or T(BPA−drt–δ) î t
a→ y. Therefore, by the induction hypothesis, BPA−drt–δ ` s =

a · y + s or BPA−drt–δ ` t = a · y + t. So in both cases BPA−drt–δ ` x = s + t =
a · y + s + t = a · y + x. Case 4: x is of the form σrel(s) for some basic term s. As
we know that T(BPA−drt–δ) î x a→ y, this case cannot occur.

(iii). Case 1: x is an atomic action. This is in contradiction with T(BPA−drt–δ) î x σ→ y, so
this case does not occur. Case 2: x is of the form atomic action followed by another
basic term. For the same reason, this case cannot occur either. Case 3: x is of the
form s+t where s and t are again basic terms. As T(BPA−drt–δ) î x

σ→ y, we know that
either T(BPA−drt–δ) î s

σ→ y, or T(BPA−drt–δ) î t
σ→ y, or both. So, by the induction

hypothesis, either BPA−drt–δ ` t = σrel(y) + t, or BPA−drt–δ ` s = σrel(y) + s, or both.
So in all cases BPA−drt–δ ` x = s + t = σrel(y) + s + t = σrel(y) + x. Case 4: x is of
the form σrel(s) for some basic term s. Then necessarily s ≡ y. So, BPA−drt–δ ` x =
x+ x = σrel(y) + x = σrel(s) + x.

(iv). Case 1: x is an atomic action. This is in contradiction with T(BPA−drt–δ) î x
a→ y,

so this case does not occur. Case 2: x is of the form s · t, for certain terms s and
t. Then, by T(BPA−drt–δ) î x

a→ y, we either have T(BPA−drt–δ) î s
a→√ and y ≡ t, or

we have T(BPA−drt–δ) î s a→ s′ and y ≡ s′ · t for some term s′. In the first case, we
have n(x) = n(s · t) = n(s) + n(t) + 1 > n(t) = n(y), and in the second we can
apply the induction hypothesis to arrive at n(s) > n(s′), so we get n(x) = n(s·t) =
n(s)+n(t)+1> n(s′)+n(t)+1 = n(s′ ·t) = n(y). Case 3: x is of the form s+t, for
certain terms s and t. As T(BPA−drt–δ) î s + t a→ y, necessarily T(BPA−drt–δ) î s a→ y
or T(BPA−drt–δ) î t a→ y. Therefore, by the induction hypothesis, n(s) > n(y) or
n(t) > n(y). As n ranges over the positive naturals only, in both cases n(x) =
n(s+ t) = n(s)+n(t)+1 > n(y). Case 4: x ≡ σrel(s) for a certain term s, does not
occur, as T(BPA−drt–δ) î σrel(s)

a
3 .

(v). Case 1: x is an atomic action. This is in contradiction with T(BPA−drt–δ) î x σ→ y,
so this case does not occur. Case 2: x is of the form s · t, for certain terms s and
t. Then, necessarily, T(BPA−drt–δ) î s σ→ s′ and y ≡ s′ · t for some term s′. We now
can apply the induction hypothesis to arrive at n(s) > n(s′), so we get n(x) =
n(s · t) = n(s) + n(t) + 1 > n(s′) + n(t) + 1 = n(s′ · t) = n(y). Case 3: x is of the
form s + t, for certain terms s and t. Now, by T(BPA−drt–δ) î x σ→ y we know that
either T(BPA−drt–δ) î s

σ→ y, or T(BPA−drt–δ) î t
σ→ y, or both. So, by the induction

hypothesis, either n(s) > n(y), or n(t) > n(y), or both. So in all cases n(x) = n(s+
t) = n(s)+n(t)+1 > n(y). Case 4: if x is of the form σrel(s), for a certain term s, it
must be the case that s ≡ y. So, n(x) = n(σrel(s)) = n(σrel(y)) = n(y) + 1 > n(y).

�

Theorem 2.4.17 (Completeness of BPA−drt–δ)
The axiom system BPA−drt–δ is a complete axiomatization of the set of closed BPA−drt–δ terms
modulo bisimulation equivalence.
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Proof This proof is almost identical to the one of Theorem 2.2.22, with the exception
of the fourth case. Let x and y be bisimilar closed BPA−drt–δ terms. We have to prove that
BPA−drt–δ ` x = y. With the aid of Theorem 2.2.16 and Theorem 2.4.14, it is enough to
prove this for basic terms. By Corollary 2.2.21 it is even enough to prove for all basic
terms x and y that:

x+ y ∼BPA−drt–δ y =⇒ BPA−drt–δ ` x+ y = y.
We will prove this by induction on n(x), using Lemma 2.4.16(iv)–(v) and case distinction
on the form of basic term x. Case 1: x is of the form a, for a ∈ A. Then T(BPA−drt–δ) î
x a→√, so T(BPA−drt–δ) î x+ y a→√, and because x+ y ∼BPA−drt–δ y we have T(BPA−drt–δ) î
y a→√, so with Lemma 2.4.16(i) we find that BPA−drt–δ ` x+y = y. This proves the basis of
our induction. Case 2: x is of the form a · s, when s is again a basic BPA−drt–δ term. Then
T(BPA−drt–δ) î x a→ s, and therefore T(BPA−drt–δ) î x+ y a→ s, so because x+ y ∼BPA−drt–δ y
there is an s′ with T(BPA−drt–δ) î y a→ s′ and s ∼BPA−drt–δ s′. But then by Theorem 2.4.14 and
Axiom A3 also s + s′ ∼BPA−drt–δ s′ and s′ + s ∼BPA−drt–δ s and with induction we find BPA−drt–δ `
s+s′ = s′ and BPA−drt–δ ` s′+s = s. So BPA−drt–δ ` s = s′. Now BPA−drt–δ ` x+y = a·s+y =
a·s′+y = y with Lemma 2.4.16(ii). Case 3: x is of the form s+t, for certain basic BPA−drt–δ
terms s and t. Since x+ y ∼BPA−drt–δ y, we also have s + y ∼BPA−drt–δ y and t + y ∼BPA−drt–δ y. Then
by the induction hypothesis BPA−drt–δ ` s+y = y and BPA−drt–δ ` t+y = y. So BPA−drt–δ `
x+y = s+ t +y = s+y = y. Case 4: x is of the form σrel(x′), for a certain basic BPA−drt–δ
term x′. Now T(BPA−drt–δ) î x σ→ x′, and since x+y ∼BPA−drt–δ y, we also have T(BPA−drt–δ) î
y σ→ y′ and T(BPA−drt–δ) î x + y σ→ x′ + y′ for some y′ such that x′ + y′ ∼BPA−drt–δ y′. By
Lemma 2.4.16(iii) we have BPA−drt–δ ` y = σrel(y′) + y. By the induction hypothesis we
have BPA−drt–δ ` x′ +y′ = y′. So, BPA−drt–δ ` x+y = σrel(x′)+y = σrel(x′)+σrel(y′)+y =
σrel(x′ + y′) + y = σrel(y′) + y = y. �

Remark 2.4.18 (Completeness of BPA−drt–δ)
Completeness of BPA−drt–δ is also claimed in Theorem 2.12.5 of [13] (where BPA−drt–δ is
called BPAdt). The proof given there, however, is incorrect: the (supposedly) bijective
mapping ϕ is not bijective, as ϕ−1(σ) is undefined.

2.5 Soundness and Completeness of BPA−drt–ID

Definition 2.5.1 (Signature of BPA−drt–ID)
The signature of BPA−drt–ID consists of the undelayable atomic actions {a|a ∈ A}, the un-
delayable deadlock constant δ, the alternative composition operator +, the sequential
composition operator ·, the time unit delay operator σrel, and the “now” operator νrel.

Definition 2.5.2 (Axioms of BPA−drt–ID)
The process algebra BPA−drt–ID is axiomatized by the axioms of BPA−drt–δ given in Defini-
tion 2.4.2 on page 13, Axioms DRT3–DRT5 shown in Table 9 on the following page, and
Axioms DCS1–DCS4 shown in Table 11 on the next page: BPA−drt–ID = A1–A5 + DRT1–
DRT5 + DCS1–DCS4.

Remark 2.5.3 (DRT4 and DRT5 versus DRT4A)
Note that for closed BPA−drt–ID terms Axioms DRT4–DRT5 given in Table 9 on the follow-
ing page are equivalent with Axiom DRT4A given in Table 10 on the next page. There-
fore we could replace Axioms DRT4–DRT5 in BPA−drt–ID by DRT4A without affecting the
soundness or completeness of the resulting theory. This is for example done in [16].
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δ · x = δ DRT3

a+ δ = a DRT4

σrel(x) + δ = σrel(x) DRT5

Table 9: Axioms for δ.

One such reason to do so, could be the fact that DRT4A is a straightforward reformu-
lation of Axiom A6 from BPAδ, in a setting with undelayable actions. However, we prefer
Axioms DRT4–DRT5 over DRT4A because the latter does not extend to the discrete-time
theories with immediate deadlock we will describe in the sections to follow. If we need
the equality of DRT4A, we can derive it as a lemma (which we do in Lemma 2.5.16(iv)).
We will return to this subject in Remark 2.7.3 on page 45.

x+ δ = x DRT4A

Table 10: Alternative for Axioms DRT4–DRT5.

νrel(a) = a DCS1

νrel(x+ y) = νrel(x) + νrel(y) DCS2

νrel(x · y) = νrel(x) · y DCS3

νrel(σrel(x)) = δ DCS4

Table 11: Axioms for νrel.

Definition 2.5.4 (Semantics of BPA−drt–ID)
The semantics of BPA−drt–ID are given by the term deduction system T(BPA−drt–ID), in-
duced by the deduction rules for BPA−drt–δ given in Definition 2.4.4 on page 14, and the
deduction rules for νrel shown in Table 12 on the following page.

Definition 2.5.5 (Bisimulation and Bisimulation Model for BPA−drt–ID)
Bisimulation for BPA−drt–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “BPA−drt–ID” in Def-
inition 2.4.5 on page 14 and “BPA” by “BPA−drt–ID” in Definition 2.2.11 on page 8.

Definition 2.5.6 (Basic Terms of BPA−drt–ID)
We define (σ,δ)-basic terms inductively as follows:
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x a→ x′
νrel(x)

a→ x′
x a→√

νrel(x)
a→√

Table 12: Deduction rules for νrel.

(i). For every a ∈ Aδ, a is a (σ,δ)-basic term,

(ii). if a ∈ Aδ and t is a (σ,δ)-basic term, then a · t is a (σ,δ)-basic term,

(iii). if t and s are (σ,δ)-basic terms, then t + s is a (σ,δ)-basic term,

(iv). if t is a (σ,δ)-basic term, then σrel(t) is a (σ,δ)-basic term.

From now on, if we speak of basic terms in the context of BPA−drt–ID, we mean (σ,δ)-basic
terms.

Definition 2.5.7 (Number of Symbols of a BPA−drt–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed BPA−drt–ID terms x and y, we define n(x+y) = n(x·y) = n(x)+n(y)+1,

(iii). for a closed BPA−drt–ID term x, we define n(σrel(x)) = n(νrel(x)) = n(x) + 1.

Definition 2.5.8 (Summation Convention)
We will use the convention that a summation over the empty set yields the undelayable
deadlock: ∑

i∈∅
ti = δ.

Theorem 2.5.9 (General Form of Basic Terms of BPA−drt–ID)
Modulo the commutativity and associativity of the +, all basic terms t of BPA−drt–ID are of
the form:

t ≡
∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
σrel(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms si and uk.

Proof Trivial, by inspection of the definition of basic terms, Definition 2.5.6. Observe
that the general form of basic terms is closed under the formation rules gives in Defini-
tion 2.5.6. See also [10]. �

Lemma 2.5.10 (Representation of BPA−drt–ID Terms)
Let t be a basic term. Then either BPA−drt–ID ` t = νrel(t), or there exists a basic term s
such that BPA−drt–ID ` t = νrel(t) + σrel(s) and n(s) < n(t).

Proof Let t be a basic term. By Theorem 2.5.9, we may now proceed by case analysis
on the general form of basic terms:
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(i). Either we have no σrel-summands (p = 0 in Definition 2.5.9):

t ≡
∑
i<m
ai · si +

∑
j<n
bj

for m,n ∈ N, ai, bj ∈ Aδ, and basic terms si. Then we have the following computa-
tion:

BPA−drt–ID ` t =
∑
i<m
ai · si +

∑
j<n
bj

=
∑
i<m
νrel(ai) · si +

∑
j<n
νrel(bj)

=
∑
i<m
νrel(ai · si) +

∑
j<n
νrel(bj)

= νrel

∑
i<m
ai · si +

∑
j<n
bj


= νrel(t)

(ii). Or we have at least one σrel-summand (p ≥ 1 in Definition 2.5.9) :

t ≡
∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
σrel(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms si and uk. Then we have the following
computation:

BPA−drt–ID ` t =
∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
σrel(uk)

=
∑
i<m
νrel(ai) · si +

∑
j<n
νrel(bj) +

∑
k<p
σrel(uk)

=
∑
i<m
νrel(ai · si) +

∑
j<n
νrel(bj) +

∑
k<p
σrel(uk)

= νrel

∑
i<m
ai · si +

∑
j<n
bj

+ σrel

∑
k<p
uk


= νrel

∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
σrel(uk)

+σrel

∑
k<p
uk


= νrel(t) + σrel(s)

Where we define:
s ≡

∑
k<p
uk

Note that n(s) < n(t) is now trivially satisfied, as for every summand uk of s, there
is a corresponding summand σrel(uk) of t, and at least one such summand exists
as p ≥ 1.

�
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Remark 2.5.11 (Representation of BPA−drt–ID Terms)
The main use of Lemma 2.5.10 will be in induction proofs regarding the (not yet treated)
theories PA−drt–ID and ACP−drt–ID (see Sections 3.2 to 3.5).

Theorem 2.5.12 (Elimination for BPA−drt–ID)
Let t be a closed BPA−drt–ID term. Then there is a basic term s such that BPA−drt–ID ` s = t.
Proof This theorem is proven as follows. First a number of axioms of BPA−drt–ID are
selected, and subsequently oriented as rewriting rules. This gives us a term rewriting
system. Then it is proven that this term rewriting system is strongly normalizing and
that every normal form of a closed BPA−drt–ID term is a basic term. In this way a recipe is
obtained for transforming a closed BPA−drt–ID term into a basic term.

The rewriting rules of the term rewriting system for BPA−drt–ID are given in Table 13.
The proof that this term rewriting system is strongly normalizing uses the method of

(x+ y) · z → x · z + y · z RA4

(x · y) · z → x · (y · z) RA5

σrel(x) · y → σrel(x · y) RDRT2

νrel(a) → a RDCS1

νrel(x+ y) → νrel(x) + νrel(y) RDCS2

νrel(x · y) → νrel(x) · y RDCS3

νrel(σrel(x)) → δ RDCS4

Table 13: Term Rewriting System for BPA−drt–ID.

the lexicographical path ordering.
The well-founded ordering > on constants and function symbols is the following:

νrel > · > + > σrel > a

Moreover, · has the lexicographical status of the first argument. Now we show that the
left-hand side of every rewriting rule is bigger than the right-hand side with respect to
the ordering �lpo . This is done by the following reductions:

νrel(a) �lpo νrel
?(a)

�lpo a
νrel(x+ y) �lpo νrel

?(x+ y) �lpo νrel
?(x+ y) + νrel

?(x+ y)
�lpo νrel(x+? y) + νrel(x+? y) �lpo νrel(x) + νrel(y)

νrel(x · y) �lpo νrel
?(x · y) �lpo νrel

?(x · y) · νrel
?(x · y) �lpo νrel(x ·? y) · (x · y)

�lpo νrel(x) · (x · y) �lpo νrel(x) ·? (x · y) �lpo νrel(x) · (x ·? y) �lpo νrel(x) · y
νrel(σrel(x)) �lpo νrel

?(σrel(x))
�lpo δ
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Note that we do not give reductions for RA4, RA5, and RDRT2 as these already have been
given in the proof of Theorem 2.4.11, and since the new ordering is a proper extension
of the old one, these proofs remain valid.

Next, we will prove that the normal forms of the closed BPA−drt–ID terms are basic
terms. Thereto, suppose that s is a normal form of some closed BPA−drt–ID term. Further-
more, suppose that s is not a basic term. Let s′ denote the smallest subterm of s which
is not a basic term. Then we can prove that s′ is not a normal form by case analysis. We
distinguish all possible cases:

(i). s′ is an atomic action or δ. But then s′ is a basic term. This is in contradiction with
the assumption that s′ is not a basic term, so this case does not occur.

(ii). s′ is of the form s′1 ·s′2 for basic terms s′1 and s′2. With case analysis on the structure
of basic term s′1:

(a) If s′1 is an atomic action or δ, then s′1 · s′2 is a basic term, and so s′ is a basic
term which again contradicts the assumption that s′ is not a basic term. This
case can therefore not occur.

(b) If s′1 is of the form a · t for some a ∈ Aδ and basic term t, then rewriting rule
RA5 can be applied. So, s′ is not a normal form.

(c) If s′1 is of the form t1 + t2 for t1 and t2 basic term s. Then rewriting rule RA4
is applicable. Therefore, s′ is not a normal form.

(d) If s′1 is of the form σrel(t) for some basic term t. Then rewriting rule RDRT2 is
applicable. So, s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. In this case s′ would be a basic
term, which contradicts the assumption that s′ is not a basic term. Therefore, this
case cannot occur.

(iv). s′ is of the form σrel(t) for some basic term t. But then s′ is basic term too, so the
case does not occur.

(v). s′ is of the form νrel(t) for some basic term t. But then one of RDCS1–RDCS4 is
applicable, so s′ is not a normal form.

In any case that can occur it follows that s′ is not a normal form. Since s′ is a subterm of
s, we conclude that s is not a normal form. This contradicts the assumption that s is a
normal form. From this contradiction we conclude that s is a basic term, which completes
the proof. �

Remark 2.5.13 (Elimination for BPA−drt–ID)
Elimination for BPA−drt–ID is also claimed (without proof) in Theorem 2.1 of [11].

Theorem 2.5.14 (Soundness of BPA−drt–ID)
The set of closed BPA−drt–ID terms modulo bisimulation equivalence is a model of BPA−drt–ID.

Proof In Theorem 2.4.14 we already proved the soundness of Axioms A1–A5 and
DRT1–DRT2 with respect to the term deduction system T(BPA−drt–δ). Since the term de-
duction system T(BPA−drt–ID) uses the same underlying model as the term deduction sys-
tem T(BPA−drt–δ), these proofs remain valid in the setting of BPA−drt–ID. Therefore, we
only have to prove soundness of the additional Axioms DRT3–DRT5 and DCS1–DCS4.
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Axiom DRT3 Take the relation:

R = {(s, s), (s + δ, s)∣∣s ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. First, s + δ a→ p iff s a→ p,
and note that (p,p) ∈ R. Secondly, s + δ a→√ iff s a→√. Thirdly, s + δ σ→ p iff s σ→ p,
and note that (p,p) ∈ R.

Axiom DRT4 Take the relation:

R = {(δ · s, δ)∣∣s ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that neither the
left-hand side nor the right-hand side of the axiom can perform any transition: δ ·
s a3 , δ · s σ3 and δ a

3 , δ σ
3 .

Axiom DRT5 Take the relation:

R = {(s, s), (σrel(s) + δ,σrel(s))
∣∣s ∈ C(BPA−drt–ID)

}
We look at the transitions of both sides at the same time. Observe that neither the
left-hand side nor the right-hand side of the axiom can perform an a-transition:
σrel(s)+δ a

3 and σrel(s)
a
3 . Furthermore, the only σ-transitions are σrel(s)+δ σ→ s

and σrel(s)
σ→ s, and note that (s, s) ∈ R.

Axiom DCS1 Take the relation:
R = {(νrel(a), a))}

We look at the transitions of both sides at the same time. Observe that either side
of the axiom can only do an a-transition to

√
: νrel(a)

a→√ and a a→√. No other
transitions are possible.

Axiom DCS2 Take the relation:

R = {(s, s), (νrel(s + t), νrel(s) + νrel(t))
∣∣s, t ∈ C(BPA−drt–ID)

}
We look at the transitions of both sides at the same time. Observe that neither side
of the axiom can do a σ-transition: νrel(s + t) σ3 and νrel(s) + νrel(t)

σ
3 . Further-

more, νrel(s + t) a→ p iff s + t a→ p iff s a→ p or t a→ p iff νrel(s)
a→ p or νrel(t)

a→ p iff
νrel(s) + νrel(t)

a→ p, and note that (p,p) ∈ R. Finally, νrel(s + t) a→
√

iff s + t a→√
iff s a→√ or t a→√ iff νrel(s)

a→√ or νrel(t)
a→√ iff νrel(s) + νrel(t)

a→√.

Axiom DCS3 Take the relation:

R = {(s, s), (νrel(s · t), νrel(s) · t)
∣∣s, t ∈ C(BPA−drt–ID)

}
We look at the transitions of both sides at the same time. Observe that neither side
of the axiom can do a σ-transition: νrel(s · t) σ3 and νrel(s) · t σ3 . Furthermore,
νrel(s · t) a→ p iff s · t a→ p iff s a→√ and p ≡ t or s a→ s′ and p ≡ s′ · t iff νrel(s)

a→√
and p ≡ t or νrel(s)

a→ s′ and p ≡ s′ · t iff νrel(s) · t a→ p, and note that (p,p) ∈ R.
Finally, νrel(s · t) a3

√
and νrel(s) · t a3

√
.
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Axiom DCS4 Take the relation:

R = {(νrel(σrel(s)), δ)
∣∣s ∈ C(BPA−drt–ID)

}
We look at the transitions of both sides at the same time. Observe that neither the
left-hand side nor the right-hand side of the axiom can perform any a-transition or
σ-transition: νrel(σrel(s))

a
3 , νrel(σrel(s))

σ
3 , and δ a

3 , δ σ
3 .

�

Remark 2.5.15 (Soundness of BPA−drt–ID)
Soundness of BPA−drt–ID is also claimed (without proof) in Section 2.12.1 of [13] (where
BPA−drt–ID is called BPAδdt), and in Theorem 2.2 of [11].

Lemma 2.5.16 (Towards Completeness of BPA−drt–ID)
Let x be a closed BPA−drt–ID term and let a ∈ A. Then we have:

(i). T(BPA−drt–ID) î x a→√ =⇒ BPA−drt–ID ` x = a+ x,
(ii). T(BPA−drt–ID) î x a→ y =⇒ BPA−drt–ID ` x = a · y + x,

(iii). T(BPA−drt–ID) î x σ3 =⇒ BPA−drt–ID ` x = νrel(x),

(iv). BPA−drt–ID ` x+ δ = x,
(v). T(BPA−drt–ID) î x σ→ y =⇒ BPA−drt–ID ` x = σrel(y) + νrel(x),

(vi). T(BPA−drt–ID) î x a→ y =⇒ n(x) > n(y),

(vii). T(BPA−drt–ID) î x σ→ y =⇒ n(x) > n(y).

Proof For part (i)–(v) we assume, by Theorem 2.5.12 and Theorem 2.5.14, without loss
of generality, that x is a basic term, and then apply induction on the structure of basic
terms. For part (vi) and (vii) we again have to use induction on the general structure of
terms.

(i). Suppose that T(BPA−drt–ID) î x a→√. Case 1: x ≡ b, where b ∈ Aδ. Because
T(BPA−drt–ID) î x a→√, it must be the case that b ≡ a. So we have BPA−drt–ID `
x = b = b + b = a + b = a + x. Case 2: x ≡ b · x′, where b ∈ Aδ and x′ is a basic
term. This is in contradiction with T(BPA−drt–ID) î x a→√, so this case does not oc-
cur. Case 3: x ≡ x′ +x′′, where x′ and x′′ are basic terms. As T(BPA−drt–ID) î x a→√,
necessarily T(BPA−drt–ID) î x′ a→√ or T(BPA−drt–ID) î x′′ a→√. Therefore, by the in-
duction hypothesis, BPA−drt–ID ` x′ = a+ x′ or BPA−drt–ID ` x′′ = a+ x′′. But then in
both cases BPA−drt–ID ` x = x′ +x′′ = a+x′ +x′′ = a+x. Case 4: x ≡ σrel(x′), where
x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î x a→√, so this case
does not occur.

(ii). Suppose that T(BPA−drt–ID) î x a→ y. Case 1: x ≡ b, where b ∈ Aδ. This is in contra-
diction with T(BPA−drt–ID) î x a→ y, so this case does not occur. Case 2: x ≡ b · x′,
where b ∈ Aδ and x′ is a basic term. Then, because T(BPA−drt–ID) î x a→ y, it must
be that b ≡ a and x′ ≡ y. So, BPA−drt–ID ` x = x+ x = b · x′ + x = a · y + x. Case 3:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt–ID) î x a→ y, necessarily
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T(BPA−drt–ID) î x′ a→ y or T(BPA−drt–ID) î x′′ a→ y. Therefore, by the induction hy-
pothesis, BPA−drt–ID ` x′ = a ·y+x′ or BPA−drt–ID ` x′′ = a ·y+x′′. But then in both
cases BPA−drt–ID ` x = x′ +x′′ = a ·y+x′ +x′′ = a ·y+x. Case 4: x ≡ σrel(x′), where
x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î x a→ y, so this case
does not occur.

(iii). Suppose that T(BPA−drt–ID) î x σ3 . Case 1: x ≡ a, where a ∈ Aδ. We have
BPA−drt–ID ` x = a = νrel(a) = νrel(x). Case 2: x ≡ a · x′, where a ∈ Aδ and x′
is a basic term. We have BPA−drt–ID ` x = a · x′ = νrel(a) · x′ = νrel(a · x′) = νrel(x).
Case 3: x ≡ x′ +x′′, where x′ and x′′ are basic terms. As T(BPA−drt–ID) î x σ3 , neces-
sarily T(BPA−drt–ID) î x′ σ3 and T(BPA−drt–ID) î x′′ σ3 . Therefore, by the induction
hypothesis, BPA−drt–ID ` x′ = νrel(x′) and BPA−drt–ID ` x′′ = νrel(x′′). But then also
BPA−drt–ID ` x = x′ + x′′ = νrel(x′) + νrel(x′′) = νrel(x′ + x′′) = νrel(x). Case 4: x ≡
σrel(x′), where x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î x σ3 ,
so this case does not occur.

(iv). Case 1: x ≡ a, where a ∈ Aδ. Then we have BPA−drt–ID ` x+δ = a+δ = a = x. Case 2:
x ≡ a ·x′, where a ∈ Aδ and x′ is a basic term. Then BPA−drt–ID ` x+δ = a ·x′ +δ =
a ·x′ +δ ·x′ = (a+δ) ·x′ = a ·x′ = x. Case 3: x ≡ x′ +x′′, where x′ and x′′ are basic
terms. Then, by the induction hypothesis, BPA−drt–ID ` x′ + δ = x′, x′′ + δ = x′′. So,
BPA−drt–ID ` x+ δ = x′ + x′′ + δ = x′ + x′′ = x. Case 4: x ≡ σrel(x′), where x′ is a
basic term. Then BPA−drt–ID ` x+ δ = σrel(x′) + δ = σrel(x′) = x.

(v). Suppose that T(BPA−drt–ID) î x σ→ y. Case 1: x ≡ a, where a ∈ Aδ. This is in contra-
diction with T(BPA−drt–ID) î x σ→ y, so this case does not occur. Case 2: x ≡ a · x′,
where a ∈ Aδ and x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î
x σ→ y, so this case does not occur. Case 3: x ≡ x′ + x′′, where x′ and x′′ are ba-
sic terms. As T(BPA−drt–ID) î x σ→ y, necessarily (1) T(BPA−drt–ID) î x′ σ→ y, x′′ σ3 ,
or, (2) T(BPA−drt–ID) î x′ σ3 , x′′ σ→ y, or, (3) T(BPA−drt–ID) î x′ σ→ y′, x′′ σ→ y′′ where
y ≡ y′ +y′′. In the first case, by the induction hypothesis, we have BPA−drt–ID ` x′ =
σrel(y) + νrel(x′), and, by (iii), BPA−drt–ID ` x′′ = νrel(x′′). Therefore, BPA−drt–ID `
x = x′ +x′′ = σrel(y)+νrel(x′)+νrel(x′′) = σrel(y)+νrel(x′+x′′) = σrel(y)+νrel(x).
The second case is treated analogously. In the third case we have, by the induction
hypothesis, BPA−drt–ID ` x′ = σrel(y′) + νrel(x′), x′′ = σrel(y′′) + νrel(x′′). There-
fore we have BPA−drt–ID ` x = x′ + x′′ = σrel(y′) + νrel(x′) + σrel(y′′) + νrel(x′′) =
σrel(y′ + y′′) + νrel(x′ + x′′) = σrel(y) + νrel(x). Case 4: x ≡ σrel(x′), where x′ is a
basic term. Because T(BPA−drt–ID) î x σ→ y, it must be the case that x′ ≡ y. So we
have BPA−drt–ID ` x = σrel(x′) = σrel(y) = σrel(y) + δ = σrel(y) + νrel(σrel(x′)) =
σrel(y) + νrel(x).

(vi). Suppose that T(BPA−drt–ID) î x a→ y. Case 1: x ≡ b, where b ∈ Aδ. This is in
contradiction with T(BPA−drt–ID) î x a→ y, so this case does not occur. Case 2:
x ≡ x′ · x′′, for certain terms x′ and x′′. Then, because T(BPA−drt–ID) î x a→ y, we
either have T(BPA−drt–ID) î x′ a→√ and y ≡ x′′, or we have T(BPA−drt–ID) î x′ a→ x′′′
and y ≡ x′′′ · x′′ for some term x′′′. In the first case, we have n(x) = n(x′ · x′′) =
n(x′)+n(x′′)+1 > n(x′′) = n(y), and in the second we can apply the induction hy-
pothesis to arrive at n(x′) > n(x′′′), so we get n(x) = n(x′·x′′) = n(x′)+n(x′′)+1 >
n(x′′′) + n(x′) + 1 = n(x′′′ · x′′) = n(y). Case 3: x ≡ x′ + x′′, for certain
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terms x′ and x′′. Since T(BPA−drt–ID) î x a→ y, necessarily T(BPA−drt–ID) î x′ a→ y
or T(BPA−drt–ID) î x′′ a→ y. Therefore, by the induction hypothesis, n(x′) > n(y) or
n(x′′) > n(y). In both cases n(x) = n(x′ +x′′) = n(x′)+n(x′′)+1 > n(y). Case 4:
x ≡ σrel(x′), for a certain term x′. This is in contradiction with T(BPA−drt–ID) î
x a→ y, so this case does not occur. Case 5: x ≡ νrel(x′), for a certain term x′. Since
T(BPA−drt–ID) î x a→ y, necessarily T(BPA−drt–ID) î x′ a→ y. Therefore, by the induc-
tion hypothesis, n(x′) > n(y). So, n(x) = n(νrel(x′)) = n(x′) + 1 > n(y).

(vii). Suppose that T(BPA−drt–ID) î x σ→ y. Case 1: x ≡ a, where a ∈ Aδ. This is in contra-
diction with T(BPA−drt–ID) î x σ→ y, so this case does not occur. Case 2: x ≡ x′ · x′′,
for certain terms x′ and x′′. Then necessarily, x′ σ→ x′′′ and y ≡ x′′′·x′′ for some term
x′′′. We now can apply the induction hypothesis to arrive at n(x′) > n(x′′′), so we
get n(x) = n(x′ ·x′′) = n(x′)+n(x′′)+1 > n(x′′′)+n(x′′)+1 = n(x′′′ ·x′′) = n(y).
Case 3: x ≡ x′ + x′′, for certain terms x′ and x′′. As T(BPA−drt–ID) î x σ→ y, neces-
sarily (1) T(BPA−drt–ID) î x′ σ→ y, x′′ σ3 , or, (2) T(BPA−drt–ID) î x′ σ3 , x′′ σ→ y, or, (3)
T(BPA−drt–ID) î x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′+y′′. In the first case, by the induction
hypothesis, n(x′) > n(y). So n(x) = n(x′ + x′′) = n(x′) + n(x′′) + 1 > n(y). The
second case is treated analogously. In the third case, by the induction hypothesis,
n(x′) > n(y′) and n(x′′) > n(y′′). So n(x) = n(x′ + x′′) = n(x′) + n(x′′) + 1 >
n(y′) + n(y′′) + 1 = n(y). Case 4: x ≡ σrel(x′), for a certain term x′. Because
T(BPA−drt–ID) î x σ→ y, it must be the case that x′ ≡ y. Then we have n(x) =
n(σrel(x′)) = n(x′) + 1 = n(y) + 1 > n(y). Case 5: x ≡ νrel(x′), for a certain
term x′. This is in contradiction with T(BPA−drt–ID) î x σ→ y, so this case does not
occur.

�

Theorem 2.5.17 (Completeness of BPA−drt–ID)
The axiom system BPA−drt–ID is a complete axiomatization of the set of closed BPA−drt–ID
terms modulo (strong) bisimulation equivalence.

Proof Suppose x+y ∼BPA−drt–ID y. We will prove, with induction on the structure of basic
term x, that BPA−drt–ID ` x+ y = y. By Theorem 2.5.12 we can restrict ourselves to basic
terms without loss of generality. The proof is done with induction on n(x), using Lemma
2.5.16(vi)–(vii) and case distinction on the form of basic term x.

(i). x ≡ δ. Then, using Lemma 2.5.16(iv) we have BPA−drt–ID ` x+y = δ+y = y+δ = y.

(ii). x ≡ a, where a ∈ A. From the deduction rules we have T(BPA−drt–ID) î x a→√ and
T(BPA−drt–ID) î x+y a→√. Since x+y ∼BPA−drt–ID y we also have T(BPA−drt–ID) î y a→√.
By Lemma 2.5.16(i) we obtain BPA−drt–ID ` y = a+y. So, BPA−drt–ID ` x+y = a+y = y.

(iii). x ≡ δ · s, where s is a basic term. Then we have BPA−drt–ID ` x = δ · s = δ and, using
(i), BPA−drt–ID ` x+ y = y.

(iv). x ≡ a · s, where a ∈ A and s is a basic term. From the deduction rules we obtain
T(BPA−drt–ID) î x a→ s and T(BPA−drt–ID) î x+ y a→ s. Since x+ y ∼BPA−drt–ID y, we then
also have T(BPA−drt–ID) î y a→ t for some t such that s ∼BPA−drt–ID t. By the induction
hypothesis we have BPA−drt–ID ` s = t. From Lemma 2.5.16(ii) we have BPA−drt–ID `
y = a · t + y. So, BPA−drt–ID ` x+ y = a · s + y = a · t + y = y.
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(v). x ≡ s + t, where s and t are basic terms. Since s + t + y ∼BPA−drt–ID y, we also have
s + y ∼BPA−drt–ID y and t + y ∼BPA−drt–ID y. By the induction hypothesis we then have
BPA−drt–ID ` s + y = y, t + y = y. So, BPA−drt–ID ` x+ y = s + t + y = s + y = y.

(vi). x ≡ σrel(s), where s is a basic term. From the deduction rules we now have that
T(BPA−drt–ID) î σrel(s)

σ→ s and since x+ y ∼BPA−drt–ID y we also have T(BPA−drt–ID) î
y σ→ t, x+ y σ→ s+ t for some t such that s+ t ∼BPA−drt–ID t. By Lemma 2.5.16(v) we have
BPA−drt–ID ` y = σrel(t) + νrel(y). By the induction hypothesis we have BPA−drt–ID `
s + t = t. So, BPA−drt–ID ` x+ y = σrel(s) + y = σrel(s) + σrel(t) + νrel(y) = σrel(s +
t) + νrel(y) = σrel(t) + νrel(y) = y.

�

Remark 2.5.18 (Completeness of BPA−drt–ID)
Completeness of BPA−drt–ID is also claimed (without proof) in Section 2.12.1 of [13] (where
BPA−drt–ID is called BPAδdt), and in Theorem 2.2 of [11].

2.6 Soundness and Completeness of BPA+drt–ID

Definition 2.6.1 (Signature of BPAdrt–ID)
The signature of BPAdrt–ID consists of the undelayable atomic actions {a|a ∈ A}, the
delayable atomic actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable
deadlock constant δ, the alternative composition operator +, the sequential composition
operator ·, the time unit delay operator σrel, the “now” operator νrel, and the unbounded
start delay operator b cω.

Definition 2.6.2 (Axioms of BPAdrt–ID)
The process algebra BPAdrt–ID is axiomatized by the axioms of BPA−drt–ID given in Defini-
tion 2.5.2 on page 22, and Axioms ATS and USD shown in Table 14: BPAdrt–ID = A1–A5
+ DRT1–DRT5 + DCS1–DCS4 + ATS + USD.

a = bacω ATS

bxcω= νrel(x) + σrel(bxcω) USD

Table 14: Axioms for delayable actions.

Definition 2.6.3 (Recursion Principle for BPAdrt–ID)
Next to the axioms mentioned in Definition 2.6.2, the system BPA+drt–ID also contains the
recursion principle RSP(USD) shown in Table 15 on the following page. For more infor-
mation on recursion principles and their status with respect to axioms, see [14].

Remark 2.6.4 (Notation BPA+drt–ID)
By superscripting a theory with a “+” (e.g. BPA+drt–ID), we indicate the presence of the re-
cursion principle RSP(USD). Note that in [9, 11] the notation BPAdrt–ID + RSP(USD) is used
instead of BPA+drt–ID. However, we find that notation cumbersome, as it clutters up the
formulae.
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y = νrel(x) + σrel(y) =⇒ y = bxcω RSP(USD)

Table 15: Recursive Specification Principle for the Unbounded Start Delay.

Definition 2.6.5 (Semantics of BPAdrt–ID)
The semantics of BPAdrt–ID are given by the term deduction systemT(BPAdrt–ID) induced
by the deduction rules for BPA−drt–ID given in Definition 2.5.4 on page 23, and the deduc-
tion rules for delayable actions given in Table 16.

a a→√ a σ→ a δ σ→ δ

x a→ x′
bxcω a→ x′

x a→√

bxcω a→√ bxcω σ→ bxcω

Table 16: Deduction rules for delayable actions.

Definition 2.6.6 (Bisimulation and Bisimulation Model for BPAdrt–ID)
Bisimulation for BPAdrt–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “BPAdrt–ID” in Def-
inition 2.4.5 on page 14 and “BPA” by “BPAdrt–ID” in Definition 2.2.11 on page 8.

Definition 2.6.7 (Basic Terms of BPAdrt–ID)
We define (σ,δ,δ)-basic terms inductively as follows:

(i). If a ∈ Aδ, then a and a are (σ,δ,δ)-basic terms,

(ii). if a ∈ Aδ and t is a (σ,δ,δ)-basic term, then a · t and a · t are (σ,δ,δ)-basic terms,

(iii). if t and s are (σ,δ, δ)-basic terms, then t + s is a (σ,δ,δ)-basic term,

(iv). if t is a (σ,δ, δ)-basic term, then σrel(t) is a (σ,δ, δ)-basic term.

From now on, if we speak of basic terms in the context of BPAdrt–ID, we mean (σ,δ,δ)-
basic terms.

Definition 2.6.8 (Number of Symbols of a BPAdrt–ID term)
We define n(x), the number of symbols of x, is inductively as follows:

(i). For a ∈ Aδ, we define n(a) = n(a) = 1,

(ii). for closed BPAdrt–ID terms x and y, we define n(x+y) = n(x·y) = n(x)+n(y)+1,

(iii). for a closed BPAdrt–ID term x, we define n(σrel(x)) = n(νrel(x)) = n(bxcω) = n(x)+
1.
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Proposition 2.6.9 (Properties of BPA+drt–ID, Part I)
For BPAdrt–ID terms x and y, and any a ∈ Aδ, we have the following equalities:

(i). BPA+drt–ID ` bacω= a
(ii). BPA+drt–ID ` bx · ycω= bxcω· y

(iii). BPA+drt–ID ` bx+ ycω= bxcω+ bycω

(iv). BPA+drt–ID ` bσrel(x)cω= δ
(v). BPAdrt–ID ` νrel(a) = a

Proof

(i). Consider the following computation:

BPAdrt–ID ` a = bacω
= νrel(a) + σrel

(bacω)
= a+ σrel(a)
= a+ δ+ σrel(a)
= νrel(a) + νrel

(
σrel

(bacω))+σrel(a)
= νrel

(
a+ σrel

(bacω))+ σrel(a)
= νrel

(
νrel(a) + σrel

(bacω))+σrel(a)
= νrel

(bacω)+ σrel(a)
= νrel(a) + σrel(a)

Using RSP(USD), we obtain:

BPA+drt–ID ` a = bacω

(ii). Consider the following computation:

BPAdrt–ID ` bxcω· y = (νrel(x) + σrel(bxcω)) · y
= νrel(x) · y + σrel(bxcω) · y
= νrel(x · y) + σrel(bxcω· y)

Using RSP(USD) (with x instantiated by x · y and y by bxcω· y), we obtain:

BPA+drt–ID ` bxcω· y = bx · ycω

(iii). Consider the following computation:

BPAdrt–ID ` bxcω+ bycω= νrel(x) +σrel(bxcω) + νrel(y) + σrel(bycω)
= νrel(x+ y) + σrel(bxcω+ bycω)

Using RSP(USD), we obtain:

BPA+drt–ID ` bxcω+ bycω= bx+ ycω
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(iv). Consider the following computation:

BPAdrt–ID ` δ = bδcω
= νrel(δ) + σrel

(bδcω)
= δ+ σrel

(bδcω)
= σrel(δ)
= νrel(σrel(x)) + σrel(δ)

Using RSP(USD), we obtain:

BPA+drt–ID ` δ = bσrel(x)cω

(v). Consider the following computation:

BPAdrt–ID ` νrel(a) = νrel(bacω)
= νrel

(
νrel(a) + σrel

(bacω))
= νrel(a+ σrel(a))
= νrel(a) + νrel(σrel(a))
= a+ δ
= a

So we obtain:
BPAdrt–ID ` νrel(a) = a

�

Remark 2.6.10 (Properties of BPA+drt–ID, Part I)
The equalities of Proposition 2.6.9 on the page before are not new, but have been de-
scribed before. See for example [20].

Proposition 2.6.11 (Properties of BPA+drt–ID, Part II)
For any BPAdrt–ID term x we have the following equality:

BPA+drt–ID ` δ · x = δ

Proof Using Proposition 2.6.9(ii) we derive:

BPA+drt–ID ` δ · x = bδcω· x = bδ · xcω= bδcω= δ

�

Theorem 2.6.12 (Elimination for BPA+drt–ID)
Let t be a closed BPAdrt–ID term. Then there is a basic term s such that BPA+drt–ID ` s = t.
Proof First a term rewriting system is given. Then, it is shown that this term rewriting
system is strongly normalizing and that the normal forms of the closed BPAdrt–ID terms
are basic terms.

The term rewriting system is given in Table 17 on the following page. The rewriting
rules RA4, RA5, RDRT2, RATS, and RDCS1–RDCS4 are obtained directly from the axioms.
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(x+ y) · z → x · z + y · z RA4

(x · y) · z → x · (y · z) RA5

σrel(x) · y → σrel(x · y) RDRT2

bacω→ a RATS

bacω→ a RUSD1

bx · ycω→ bxcω· y RUSD2

bx+ ycω→ bxcω+ bycω RUSD3

bσrel(x)cω→ δ RUSD4

νrel(a) → a RDCS1

νrel(x+ y) → νrel(x) + νrel(y) RDCS2

νrel(x · y) → νrel(x) · y RDCS3

νrel(σrel(x)) → δ RDCS4

νrel(a) → a RDCS5

Table 17: Term rewriting system for BPAdrt–ID.

The rewriting rules RUSD1–RUSD4 and RDCS5 are added to deal properly with the recur-
sive definition of ultimate start delay; the corresponding equalities are derivable from the
axioms as is shown in Proposition 2.6.9. With the method of the lexicographical path
ordering it is shown that the term rewriting system is strongly normalizing. Thereto the
operator · is assigned the lexicographical status for the first argument and the following
well-founded partial ordering on the signature of BPAdrt–ID is defined:

b cω > a
∨

νrel > · > +
∨ ∨
a σrel

Now we show that the left-hand side of every rewriting rule is bigger than the right-hand
side with respect to the ordering �lpo . This is done by the following reductions:

bacω�lpo bacω
?

�lpo a

bacω�lpo bacω
?

�lpo a

bx · ycω�lpo bx · ycω
?�lpo bx · ycω

? · bx · ycω?�lpo

⌊
x ·? y⌋ω· (x · y)

�lpo bxcω· (x · y) �lpo bxcω· (x ·? y) �lpo bxcω· y
bx+ ycω�lpo bx+ ycω

?�lpo bx+ ycω
?+ bx+ ycω?�lpo

⌊
x+? y⌋ω+ ⌊x+? y⌋ω

�lpo bxcω+ bycω
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bσrel(x)cω�lpo bσrel(x)cω
?

�lpo δ
νrel(a) �lpo νrel

?(a)
�lpo a

Note that we do not give reductions for RA4, RA5, RDRT2, and RDCS1–RDCS4 as these
already have been given in the proofs of previous elimination theorems, and since the
new ordering is a proper extension of the old ones, these proofs remain valid.

It remains to prove that every normal form of a closed BPAdrt–ID term is a basic term.
Suppose that s is the normal form of a closed BPAdrt–ID term. Furthermore, suppose that
s is not a basic term and that s′ is the smallest subterm of s which is not a basic term.
We distinguish all possible cases:

(i). s′ is of the form a or a for some a ∈ Aδ. Then s′ is clearly a basic term, so this case
does not occur.

(ii). s′ is of the form s1 · s2 for basic terms s1 and s2. With respect to basic term s1 the
following cases can be distinguished:

(a) s1 ≡ a for some a ∈ Aδ. Then s′ is a basic term. This contradicts the assump-
tion that s′ is not a basic term.

(b) s1 ≡ a for some a ∈ Aδ. Then s′ is a basic term, and we have again a contra-
diction.

(c) s1 ≡ a · s′1 for some a ∈ Aδ and basic term s′1. Then rewriting rule RA5 is
applicable, so s′ is not a normal form.

(d) s1 ≡ a · s′1 for some a ∈ Aδ and basic term s′1. Then rewriting rule RA5 is
applicable, so s′ is not a normal form.

(e) s1 ≡ s′1 + s′′1 for some basic terms s′1 and s′′2 . Then rewriting rule RA4 is appli-
cable, so s′ is not a normal form.

(f) s1 ≡ σrel(s′1) for some basic term s′1. Then rewriting rule RDRT2 is applicable,
so s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. Then s′ is a basic term itself, so
this case cannot happen.

(iv). s′ is of the form σrel(s′′) for some basic term s′′. Then again s′ is a basic term itself,
so this case cannot happen either.

(v). s′ is of the form νrel(s′′), where s′′ is a basic term. Then one of RDCS1–RDCS5 can
be applied, so s′ is not a normal form.

(vi). s′ is of the form bs′′cω for some basic term s′′. Then one of RATS or RUSD1–RUSD4
can be applied, so s′ is not a normal form.

In every case s′ is a basic term or a rewriting rule is applicable. If s′ is a basic term this
contradicts the assumption that it is not. If a rewriting rule is applicable then s′ and s
are not a normal form. This contradicts the assumption that s is a normal form. From
this contradiction we conclude that s is a basic term. �
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Remark 2.6.13 (Elimination for BPA+drt–ID)
Elimination for BPA+drt–ID is also claimed (without proof) in Theorem 5.3 of [11] (where
BPA+drt–ID is called BPAdrt–ID).

Theorem 2.6.14 (Soundness of BPA+drt–ID)
The set of closed BPAdrt–ID terms modulo bisimulation equivalence is a model of BPA+drt–ID.

Proof Note that the soundness proofs for Axioms A1–A5, DRT1–DRT5, and DCS1–
DCS4 given in the previous sections also remain valid in the setting with delayable ac-
tions. This is due to the fact that the underlying model (namely: finite transition systems
with σ ’s) has not changed. Or, stated more concretely: all σ-transitions were considered
without regard for whether they resulted from a σrel operator or otherwise, so the extra
σ-transitions introduced by the delayable actions do not matter.

Axiom ATS Take the relation:
R = {(a, bacω)}

There are only two transitions possible on the left-hand side of the axiom: a a→√
and a σ→ a. The right-hand side can also perform two transitions: bacω a→√ and
bacω σ→ bacω, and note that

(
a, bacω) ∈ R.

Axiom USD Take the relation:

R = {(s, s), (bscω,νrel(s) + σrel(bscω))|s ∈ C(BPAdrt–ID)
}

First we look at the transitions of the left-hand side:

(i). Suppose bscω a→ p. Then this must be due to s a→ p. But then also νrel(s)
a→ p

and νrel(s) +σrel(bscω) a→ p, and note that (p,p) ∈ R.

(ii). Suppose bscω a→√. Then this must be due to s a→√. But then also νrel(s)
a→√

and νrel(s) +σrel(bscω) a→
√

.

(iii). Suppose bscω σ→ p. Then necessarily p ≡ bscω. We also have σrel(bscω) σ→ bscω,
hence νrel(s) + σrel(bscω) σ→ bscω, and note that (bscω, bscω) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose νrel(s)+σrel(bscω) a→ p. Then this must be due to s a→ p. But then also
bscω a→ p, and note that (p,p) ∈ R.

(ii). Suppose νrel(s) + σrel(bscω) a→
√

. Then this must be due to s a→√. But then
also bscω a→√.

(iii). Suppose νrel(s)+σrel(bscω) σ→ p. Then this must be due to σrel(bscω) σ→ p with
p ≡ bscω. Clearly, then also bscω σ→ bscω, and note that (bscω,p) ∈ R.

RSP(USD) Suppose that R′ is a bisimulation relation between y and νrel(x)+σrel(y). We
must prove that y ∼BPA−drt–ID bxcω. Then take the symmetric, transitive closure of R′
(which is again a bisimulation, see [15]), denoted R′ST, and extend it to a bisimula-
tion relation R between y and bxcω as follows:

R = R′ST ∪ {(s, bxcω)|s ∈ C(BPAdrt–ID) ∧ y σ=⇒s}
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Now, let s be any closed term such that y
σ=⇒s. Then, using induction on the number

of σ-transitions, we have that (y, s) ∈ R′.

First, we look at the transitions of the left-hand side, i.e., the transitions of s:

(i). Suppose s a→ p. Then, as (y, s) ∈ R′, y a→ q such that (p, q) ∈ R′. As (y, νrel(x)+
σrel(y)) ∈ R′, we have νrel(x) + σrel(y)

a→ r for some r such that (q, r) ∈ R′.
Hence, νrel(x)

a→ r , hence x a→ r , hence bxcω a→ r , and note that by transitivity
(p, r) ∈ R′ST, so (p, r) ∈ R.

(ii). Suppose s a→√. Then, as (y, s) ∈ R′, y a→√. As (y, νrel(x) + σrel(y)) ∈ R′, we
have νrel(x) + σrel(y)

a→√. Hence, νrel(x)
a→√, hence x a→√, hence bxcω a→√.

(iii). Suppose s σ→ p. Since y
σ=⇒s, we have y

σ=⇒p. We also have bxcω σ→ bxcω, and note
that (p, bxcω) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose bxcω a→ q. Then x a→ q, hence νrel(x)
a→ q, hence νrel(x) + σrel(y)

a→ q.
As (y, νrel(x)+σrel(y)) ∈ R′, we know that y a→ p for some p such that (p, q) ∈
R′. Since (y, s) ∈ R′, we also have s a→ r for some r such that (p, r) ∈ R′, and
note that by symmetry and transitivity (r, q) ∈ R′ST, so (r, q) ∈ R.

(ii). Suppose bxcω a→√. Then x a→√, hence νrel(x)
a→√, hence νrel(x)+σrel(y)

a→√.
As (y, νrel(x) + σrel(y)) ∈ R′, we know that y a→√. Since (y, s) ∈ R′, we also
have s a→√.

(iii). Suppose bxcω σ→ q. Then, it must be the case that q ≡ bxcω. We also have
σrel(y)

σ→ y, hence νrel(x) + σrel(y)
σ→ y, and as (y, νrel(x) + σrel(y)) ∈ R′,

we know that y σ→ p such that (p, y) ∈ R′. As (y, s) ∈ R′, necessarily s σ→ r
for some r such that (p, r) ∈ R′. Since y

σ=⇒s, we have y
σ=⇒r , and note that

(r, bxcω) ∈ R.

�

Remark 2.6.15 (Soundness of BPA+drt–ID)
Soundness of BPA+drt–ID is also claimed (without proof) in Theorem 5.4 of [11] (where
BPA+drt–ID is called BPAdrt–ID).

Lemma 2.6.16 (Towards Completeness of BPA+drt–ID)
Let x and y be closed BPAdrt–ID terms and let a ∈ A. Then we have:

(i). T(BPAdrt–ID) î x a→√ =⇒ BPA+drt–ID ` x = a+ x,

(ii). T(BPAdrt–ID) î x a→ y =⇒ BPA+drt–ID ` x = a · y + x,
(iii). T(BPAdrt–ID) î x σ3 =⇒ BPA+drt–ID ` x = νrel(x),

(iv). BPA+drt–ID ` x+ δ = x,
(v). T(BPAdrt–ID) î x σ→ y =⇒ BPA+drt–ID ` x = σrel(y) + νrel(x),

(vi). T(BPAdrt–ID) î x σ→ x =⇒ BPA+drt–ID ` x = bxcω,

(vii). T(BPAdrt–ID) î x a→ y =⇒ n(x) > n(y),
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(viii). T(BPAdrt–ID) î x σ→ y =⇒ x ≡ y ∨ n(x) > n(y).
Proof For part (i)–(vi) we assume, by Theorem 2.6.12 and Theorem 2.6.14, without
loss of generality, that x is a basic term, and then apply induction on the structure of basic
terms. For part (vii) and (viii) we again have to use induction on the general structure of
terms.

(i). Suppose that T(BPAdrt–ID) î x a→√. Case 1: x ≡ b, where b ∈ Aδ. Because
T(BPAdrt–ID) î x a→√, it must be the case that b ≡ a. So we have BPA+drt–ID `
x = b = b + b = a + b = a + x. Case 2: x ≡ b, where b ∈ Aδ. Because
T(BPAdrt–ID) î x a→√, it must be the case that b ≡ a. So we have BPA+drt–ID `
x = b = bbcω= νrel(b) + σrel

(bbcω) = νrel(b) + νrel(b) + σrel
(bbcω) = b + bbcω=

a + b = a + x. Case 3: x ≡ b · x′, where b ∈ Aδ and x′ is a basic term. This is
in contradiction with T(BPAdrt–ID) î x a→√, so this case does not occur. Case 4:
x ≡ b · x′, where b ∈ Aδ and x′ is a basic term. This is in contradiction with
T(BPAdrt–ID) î x a→√, so this case does not occur. Case 5: x ≡ x′+x′′, where x′ and
x′′ are basic terms. As T(BPAdrt–ID) î x a→√, necessarily T(BPAdrt–ID) î x′ a→√ or
T(BPAdrt–ID) î x′′ a→√. Therefore, by the induction hypothesis, BPA+drt–ID ` x′ =
a+ x′ or BPA+drt–ID ` x′′ = a+ x′′. But then in both cases BPA+drt–ID ` x = x′ + x′′ =
a+ x′ + x′′ = a+ x. Case 6: x ≡ σrel(x′), where x′ is a basic term. This is in contra-
diction with T(BPAdrt–ID) î x a→√, so this case does not occur.

(ii). Suppose that T(BPAdrt–ID) î x a→ y. Case 1: x ≡ b, where b ∈ Aδ. This is in
contradiction with T(BPAdrt–ID) î x a→ y, so this case does not occur. Case 2:
x ≡ b, where b ∈ Aδ. This is in contradiction with T(BPAdrt–ID) î x a→ y, so
this case does not occur. Case 3: x ≡ b · x′, where b ∈ Aδ and x′ is a basic
term. Then, because T(BPAdrt–ID) î x a→ y, it must be that b ≡ a and x′ ≡ y. So,
BPA+drt–ID ` x = x+ x = b · x′ + x = a · y + x. Case 4: x ≡ b · x′, where b ∈ Aδ and
x′ is a basic term. Then, because T(BPAdrt–ID) î x a→ y, it must be that b ≡ a and
x′ ≡ y. So, BPA+drt–ID ` x = b ·x′ = a·y = (a+a) ·y = a ·y+a·y = a·y+x. Case 5:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPAdrt–ID) î x a→ y, necessarily
T(BPAdrt–ID) î x′ a→ y or T(BPAdrt–ID) î x′′ a→ y. Therefore, by the induction hy-
pothesis, BPA+drt–ID ` x′ = a ·y+x′ or BPA+drt–ID ` x′′ = a ·y+x′′. But then in both
cases BPA+drt–ID ` x = x′ +x′′ = a ·y+x′ +x′′ = a ·y+x. Case 6: x ≡ σrel(x′), where
x′ is a basic term. This is in contradiction with T(BPAdrt–ID) î x a→ y, so this case
does not occur.

(iii). Suppose that T(BPAdrt–ID) î x σ3 . Case 1: x ≡ a, where a ∈ Aδ. We have
BPA+drt–ID ` x = a = νrel(a) = νrel(x). Case 2: x ≡ a, where a ∈ Aδ. This is in con-
tradiction with T(BPAdrt–ID) î x σ3 , so this case does not occur. Case 3: x ≡ a · x′,
where a ∈ Aδ and x′ is a basic term. We have BPA+drt–ID ` x = a · x′ = νrel(a) · x′ =
νrel(a · x′) = νrel(x). Case 4: x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. This
is in contradiction with T(BPAdrt–ID) î x σ3 , so this case does not occur. Case 5:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPAdrt–ID) î x σ3 , necessarily
T(BPAdrt–ID) î x′ σ3 and T(BPAdrt–ID) î x′′ σ3 . Therefore, by the induction hy-
pothesis, BPA+drt–ID ` x′ = νrel(x′) and BPA+drt–ID ` x′′ = νrel(x′′). But then also
BPA+drt–ID ` x = x′ + x′′ = νrel(x′) + νrel(x′′) = νrel(x′ + x′′) = νrel(x). Case 6: x ≡
σrel(x′), where x′ is a basic term. This is in contradiction with T(BPAdrt–ID) î x σ3 ,
so this case does not occur.
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(iv). Case 1: x ≡ a, where a ∈ Aδ. This is exactly Axiom DRT4. Case 2: x ≡ a, where
a ∈ Aδ. Then we have BPA+drt–ID ` x+δ = a+δ = bacω+δ = νrel(a)+σrel

(bacω)+
δ = a + δ + σrel

(bacω) = a + σrel
(bacω) = νrel(a) + σrel

(bacω) = bacω = a = x.
Case 3: x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. Then we have BPA+drt–ID `
x+ δ = a · x′ + δ = a · x′ + δ · x′ = (a+ δ) · x′ = a · x′ = x. Case 4: x ≡ a · x′, where
a ∈ Aδ and x′ is a basic term. Then, by case 2, BPA+drt–ID ` x + δ = a · x′ + δ =
a ·x′ +δ ·x′ = (a+δ) ·x′ = a ·x′ = x. Case 5: x ≡ x′ +x′′, where x′ and x′′ are basic
terms. By the induction hypothesis we have BPA+drt–ID ` x′ + δ = x′, x′′ + δ = x′′.
So BPA+drt–ID ` x+ δ = x′ + x′′ + δ = x′ + x′′ = x. Case 6: x ≡ σrel(x′), where x′ is a
basic term. This is exactly Axiom DRT5.

(v). Suppose that T(BPAdrt–ID) î x σ→ y. Case 1: x ≡ a, where a ∈ Aδ. This is in con-
tradiction with T(BPAdrt–ID) î x σ→ y, so this case does not occur. Case 2: x ≡ a,
where a ∈ Aδ. Because T(BPAdrt–ID) î x σ→ y, it must be the case that y ≡ a. So
we have BPA+drt–ID ` x = a = bacω= νrel(a) + σrel

(bacω) = σrel(a) + νrel(a) + δ =
σrel(a)+νrel(a)+νrel

(
σrel

(bacω)) = σrel(a)+νrel
(
νrel(a) + σrel

(bacω)) = σrel(a)+
νrel

(bacω) = σrel(a) + νrel(a) = σrel(y) + νrel(x). Case 3: x ≡ a · x′, where a ∈ Aδ
and x′ is a basic term. This is in contradiction with T(BPAdrt–ID) î x σ→ y, so this
case does not occur. Case 4: x ≡ a·x′, where a ∈ Aδ and x′ is a basic term. Because
T(BPAdrt–ID) î x σ→ y, it must be the case that y ≡ a · x′. So we have BPA+drt–ID `
x = a · x′ = bacω· x′ = (νrel(a) + σrel

(bacω)) · x′ = νrel(a) · x′ + σrel
(bacω) · x′ =

σrel
(bacω)·x′+νrel(a)·x′+δ = σrel(a·x′)+νrel(a)·x′+δ·x′ = σrel(y)+(νrel(a)+δ)·

x′ = σrel(y)+
(
νrel(a) + νrel

(
σrel

(bacω)))·x′ = σrel(y)+νrel
(
a+ σrel

(bacω))·x′ =
σrel(y)+νrel

(
νrel(a) + σrel

(bacω))·x′ = σrel(y)+νrel
(bacω)·x′ = σrel(y)+νrel(a)·

x′ = σrel(y)+νrel(a ·x′) = σrel(y)+νrel(x). Case 5: x ≡ x′ +x′′, where x′ and x′′ are
basic terms. As T(BPAdrt–ID) î x σ→ y, necessarily (1) T(BPAdrt–ID) î x′ σ→ y, x′′ σ3 ,
or, (2) T(BPAdrt–ID) î x′ σ3 , x′′ σ→ y, or, (3) T(BPAdrt–ID) î x′ σ→ y′, x′′ σ→ y′′ where
y ≡ y′ +y′′. In the first case, by the induction hypothesis, we have BPA+drt–ID ` x′ =
σrel(y) + νrel(x′), and, by (iii), BPA+drt–ID ` x′′ = νrel(x′′). Therefore, BPA+drt–ID `
x = x′ +x′′ = σrel(y)+νrel(x′)+νrel(x′′) = σrel(y)+νrel(x′+x′′) = σrel(y)+νrel(x).
The second case is treated analogously. In the third case we have, by the induction
hypothesis, BPA+drt–ID ` x′ = σrel(y′) + νrel(x′), x′′ = σrel(y′′) + νrel(x′′). There-
fore we have BPA+drt–ID ` x = x′ + x′′ = σrel(y′) + νrel(x′) + σrel(y′′) + νrel(x′′) =
σrel(y′ + y′′) + νrel(x′ + x′′) = σrel(y) + νrel(x). Case 6: x ≡ σrel(x′), where x′ is a
basic term. Because T(BPAdrt–ID) î x σ→ y, it must be the case that x′ ≡ y. So we
have BPA+drt–ID ` x = σrel(x′) = σrel(y) = σrel(y) + δ = σrel(y) + νrel(σrel(x′)) =
σrel(y) + νrel(x).

(vi). Suppose that T(BPAdrt–ID) î x σ→ x. Case 1: x ≡ a, where a ∈ Aδ. This is in contra-
diction with T(BPAdrt–ID) î x σ→ x, so this case does not occur. Case 2: x ≡ a, where
a ∈ Aδ. Then we have, using Proposition 2.6.9(i), BPA+drt–ID ` x = a = bacω= bxcω.
Case 3: x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. This is in contradiction
with T(BPAdrt–ID) î x σ→ x, so this case does not occur. Case 4: x ≡ a · x′, where
a ∈ Aδ and x′ is a basic term. Then we can derive, using Proposition 2.6.9(i) and (ii),
BPA+drt–ID ` x = a·x′ = bacω·x′ = ba · x′cω= bxcω. Case 5: x ≡ x′+x′′, where x′ and
x′′ are basic terms. Then we can derive, using Proposition 2.6.9(iii) and the induc-
tion hypothesis, BPA+drt–ID ` x = x′+x′′ = bxcω+bx′cω= bx′ + x′′cω= bxcω. Case 6:
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x ≡ σrel(x′), where x′ is a basic term. This is in contradiction with T(BPAdrt–ID) î
x σ→ x, so this case does not occur.

(vii). Suppose that T(BPAdrt–ID) î x a→ y. Case 1: x ≡ b, where b ∈ Aδ. This is in con-
tradiction with T(BPAdrt–ID) î x a→ y, so this case does not occur. Case 2: x ≡ b,
where b ∈ Aδ. This is in contradiction with T(BPAdrt–ID) î x a→ y, so this case does
not occur. Case 3: x is of the form x′ · x′′, for certain terms x′ and x′′. Then, by
T(BPAdrt–ID) î x a→ y, we either have T(BPAdrt–ID) î x′ a→√ and y ≡ x′′, or we
have T(BPAdrt–ID) î x′ a→ x′′′ and y ≡ x′′′ · x′′ for a certain term x′′′. In the first
case, we have n(x) = n(x′ · x′′) = n(x′) + n(x′′) + 1 > n(x′′) = n(y), and in the
second we can apply the induction hypothesis to arrive at n(x) > n(x′′′), so we get
n(x) = n(x′ · x′′) = n(x′) + n(x′′) + 1 > n(x′) + n(x′′′) + 1 = n(x′′′ · x′) = n(y).
Case 4: x ≡ x′ + x′′, for certain terms x′ and x′′. Since T(BPAdrt–ID) î x a→ y,
necessarily T(BPAdrt–ID) î x′ a→ y or T(BPAdrt–ID) î x′′ a→ y. Therefore, by the
induction hypothesis, n(x′) > n(y) or n(x′′) > n(y). In both cases n(x) =
n(x′ + x′′) = n(x′) + n(x′′) + 1 > n(y). Case 5: x ≡ σrel(x′), for a certain term
x′. This is in contradiction with T(BPAdrt–ID) î x a→ y, so this case does not oc-
cur. Case 6: x ≡ νrel(x′), for a certain term x′. Then, by T(BPAdrt–ID) î x a→ y,
we also have T(BPAdrt–ID) î x′ a→ y, and using the induction hypothesis, n(x) =
n(νrel(x′)) = n(x′) + 1 > n(y). Case 7: x ≡ bx′cω, for a certain term x′. Then, by
T(BPAdrt–ID) î x a→ y, we also have T(BPAdrt–ID) î x′ a→ y, and using the induction
hypothesis, n(x) = n(bx′cω) = n(x′) + 1 > n(y).

(viii). Suppose that T(BPAdrt–ID) î x σ→ y. Case 1: x ≡ a, where a ∈ Aδ. This is in con-
tradiction with T(BPAdrt–ID) î x σ→ y, so this case does not occur. Case 2: x ≡ a,
where a ∈ Aδ. As T(BPAdrt–ID) î x σ→ y, necessarily y ≡ x. Case 3: x ≡ x′ · x′′ for
certain terms x′ and x′′. Then, because T(BPAdrt–ID) î x σ→ y, either x ≡ y and we
are done, or T(BPAdrt–ID) î x′ σ→ x′′′ and y ≡ x′′′ ·x′′ for some term x′′′ � x′. In that
case, we can apply the induction hypothesis to arrive at n(x′) > n(x′′′), so we get
n(x) = n(x′ · x′′) = n(x′) + n(x′′) + 1 > n(x′′′) + n(x′′) + 1 = n(x′′′ · x′′) = n(y).
Case 4: x ≡ x′ + x′′, for certain terms x′ and x′′. As T(BPAdrt–ID) î x σ→ y, neces-
sarily (1) T(BPAdrt–ID) î x′ σ→ y, x′′ σ3 , or, (2) T(BPAdrt–ID) î x′ σ3 , x′′ σ→ y, or, (3)
T(BPAdrt–ID) î x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′ + y′′. In the first case, by the induc-
tion hypothesis, x′ ≡ y or n(x′) > n(y). If x′ ≡ y we have n(x) = n(x′ + x′′) =
n(x′) + n(x′′) + 1 > n(x′) = n(y), otherwise we have n(x) = n(x′ + x′′) =
n(x′) + n(x′′) + 1 > n(y). The second case is treated analogously. In the third
case, by the induction hypothesis, x′ ≡ y′ or n(x′) > n(y′), and, x′′ ≡ y′′ or
n(x′′) > n(y′′). If x′ ≡ y′ and x′′ ≡ y′′, we have x ≡ x′+x′′ ≡ y′ +y′′ ≡ y, and we are
done. Otherwise, we have n(x′) + n(x′′) > n(y′) + n(y′′), so n(x) = n(x′ + x′′) =
n(x′) + n(x′′) + 1 > n(y′) + n(y′′) + 1 = n(y). Case 5: x ≡ σrel(x′), for a certain
term x′. Because T(BPAdrt–ID) î x σ→ y, it must be the case that x′ ≡ y. Then we
have n(x) = n(σrel(x′)) = n(x′) + 1 = n(y) + 1 > n(y). Case 6: x ≡ νrel(x′), for a
certain term x′. This is in contradiction with T(BPAdrt–ID) î x σ→ y, so this case does
not occur. Case 7: x ≡ bx′cω, for a certain term x′. Because T(BPAdrt–ID) î x σ→ y,
it must be the case that x ≡ y, and we are done.

�
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Theorem 2.6.17 (Completeness of BPA+drt–ID)
The axiom system BPA+drt–ID is a complete axiomatization of the set of closed BPAdrt–ID
terms modulo bisimulation equivalence.

Proof Suppose that s + t ∼BPAdrt–ID t. We will prove that BPA+drt–ID ` s + t = t. By
Theorem 2.6.12 we can restrict ourselves to basic terms s and t. The proof is done with
induction on n(s), using Lemma 2.6.16(vii)–(viii) and case distinction on the form of basic
term s.

(i). s ≡ δ. The equality that we must prove, i.e. BPA+drt–ID ` δ + t = t, is Lemma
2.6.16(iv).

(ii). s ≡ a, where a ∈ A. Then s a→√. Then also s+ t a→√. Since s+ t and t are bisimilar
also t a→√. By Lemma 2.6.16(i) we have BPA+drt–ID ` t = a+t. Consider the following
computation: BPA+drt–ID ` s + t = a+ t = t.

(iii). s ≡ δ. Then δ σ→ δ. Therefore s + t σ→ s + t′ and t σ→ t′ with s + t′ ∼BPAdrt–ID t′. With
Lemma 2.6.16(v) we have BPA+drt–ID ` t = σrel(t′) + νrel(t). Two cases need to be
considered:

(a) t ≡ t′. Now, s+ t σ→ s+ t and t σ→ t, so by Lemma 2.6.16(vi) we have BPA+drt–ID `
s + t = bs + tcω and BPA+drt–ID ` t = btcω. So we can derive, using Proposition
2.6.9(iii) and Lemma 2.6.16(iv): BPA+drt–ID ` s + t = bs + tcω = bscω+ btcω =
bδcω+ btcω= δ+ btcω= bδcω+ btcω= bδ+ tcω= btcω= t.

(b) t � t′. Now, by Lemma 2.6.16(viii), n(t′) < n(t). Therefore, the induction
hypothesis is applicable: BPA+drt–ID ` δ+ t′ = t′. Consider the following com-
putation: BPA+drt–ID ` s + t = δ + t = bδcω+ t = νrel(δ) + σrel

(bδcω) + t =
δ+σrel(δ)+t = σrel(δ)+t = σrel(δ)+σrel(t′)+νrel(t) = σrel(δ+t′)+νrel(t) =
σrel(t′) + νrel(t) = t.

(iv). s ≡ a, where a ∈ A. Then s a→√. Therefore s + t a→√ and, since s + t ∼BPAdrt–ID t,
t a→√. Using Lemma 2.6.16(i) we obtain BPA+drt–ID ` t = a + t. We also have s σ→ s.
Therefore s+ t σ→ s+ t′ and t σ→ t′. From Lemma 2.6.16(v) we obtain: BPA+drt–ID ` t =
σrel(t′) + νrel(t). Two cases can be distinguished:

(a) t ≡ t′. Now, s+ t σ→ s+ t and t σ→ t, so by Lemma 2.6.16(vi) we have BPA+drt–ID `
s + t = bs + tcω and BPA+drt–ID ` t = btcω. So we can derive, using Proposition
2.6.9(iii): BPA+drt–ID ` s+ t = bs + tcω= bscω+btcω= bacω+btcω= a+btcω=
bacω+ btcω= ba+ tcω= btcω= t.

(b) t � t′. Now, by Lemma 2.6.16(viii), n(t′) < n(t). Therefore, the induction
hypothesis is applicable: BPA+drt–ID ` a + t′ = t′. Consider the following com-
putation: BPA+drt–ID ` s + t = a + t = bacω+ t = νrel(a) + σrel

(bacω) + t =
a+σrel(a)+t = σrel(a)+t = σrel(a)+σrel(t′)+νrel(t) = σrel(a+t′)+νrel(t) =
σrel(t′) + νrel(t) = t.

(v). s ≡ δ · s′, where s′ is a basic term. Then we have BPA+drt–ID ` s = δ · s′ = δ and,
using (i), BPA+drt–ID ` s + t = t.

(vi). s ≡ a · s′, where a ∈ A and s′ is a basic term. Then s a→ s′ and s + t a→ s′. By Lemma
2.6.16(ii) we have BPA+drt–ID ` t = a·t′+t. Since s+t ∼BPAdrt–ID t we also have t a→ t′ for
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some t′ such that s′ ∼BPAdrt–ID t′. By induction we have BPA+drt–ID ` s′ = t′. Consider
the following computation: BPA+drt–ID ` s + t = a · s′ + t = a · t′ + t = t.

(vii). s ≡ δ · s′, where s′ is a basic term. Then we have, using Proposition 2.6.11,
BPA+drt–ID ` s = δ · s′ = δ and, using (iii), BPA+drt–ID ` s + t = t.

(viii). s ≡ a · s′, where a ∈ A and s′ is a basic term. Then s a→ s′ and s + t a→ s′. Since
s + t ∼BPAdrt–ID t we also have t a→ t′ for some t′ such that s′ ∼BPAdrt–ID t′. By induction
we therefore have BPA+drt–ID ` s′ = t′. We also have s σ→ s and s + t σ→ s + t′′ and
t σ→ t′′. By Lemma 2.6.16(ii) we have BPA+drt–ID ` t = a · t′ + t and BPA+drt–ID ` t =
σrel(t′′) + νrel(t). Two cases can be distinguished:

(a) t ≡ t′′. Now, s+ t σ→ s+ t and t σ→ t, so by Lemma 2.6.16(vi) we have BPA+drt–ID `
s + t = bs + tcω and BPA+drt–ID ` t = btcω. So we can derive, using Proposition
2.6.9(i)–(iii): BPA+drt–ID ` s + t = bs + tcω = bscω+ btcω = ba · s′cω+ btcω =
bacω·s′+btcω= a·s′+btcω= bacω·s′+btcω= ba · s′cω+btcω= ba · s′ + tcω=
ba · t′ + tcω= btcω= t.

(b) t � t′′. Now, by Lemma 2.6.16(viii), n(t′′) < n(t). By the induction hypothesis
we then have BPA+drt–ID ` s + t′′ = t′′. Consider the following computation:
BPA+drt–ID ` s + t = a · s′ + t = bacω· s′ + t = (νrel(a) + σrel

(bacω)) · s′ + t =
(a+σrel(a)) · s′ + t = a · t′ +σrel(a) · s′ + t = σrel(a) · s′ + t = σrel(a · s′)+ t =
σrel(s) + t = σrel(s) + σrel(t′′) + νrel(t) = σrel(s + t′′) + νrel(t) = σrel(t′′) +
νrel(t) = t.

(ix). s ≡ s′ + s′′, where s′ and s′′ are basic terms. Since s′ + s′′ + t ∼BPAdrt–ID t we also have
s′ + t ∼BPAdrt–ID t and s′′ + t ∼BPAdrt–ID t. By induction we have BPA+drt–ID ` s′ + t = t and
BPA+drt–ID ` s′′ + t = t. Then BPA+drt–ID ` s + t = s′ + s′′ + t = s′′ + t = t.

(x). s ≡ σrel(s′), where s′ is a basic term. Then s σ→ s′ and s+t σ→ s′+t′ and t σ→ t′ for some
t′ such that s′ + t′ ∼BPAdrt–ID t′. By induction we have BPA+drt–ID ` s′ + t′ = t′ and by
Lemma 2.6.16(v) we have BPA+drt–ID ` t = σrel(t′)+νrel(t). Then BPA+drt–ID ` s+ t =
σrel(s′)+t = σrel(s′)+σrel(t′)+νrel(t) = σrel(s′+t′)+νrel(t) = σrel(t′)+νrel(t) = t.

�

Remark 2.6.18 (Completeness of BPA+drt–ID)
Completeness of BPA+drt–ID is also claimed (without proof) in Theorem 5.4 of [11] (where
BPA+drt–ID is called BPAdrt–ID).

Definition 2.6.19 (Axioms for the Ultimate Start Delay)
We define Axioms USD1–USD4 for the ultimate start delay as given in Table 18 on the next
page. Note that they precisely correspond to the equalities of Proposition 2.6.9(i)–(iv).

Remark 2.6.20 (Proving Soundness and Completeness Indirectly)
Next to proving soundness and completeness directly (outlined in Remarks 2.4.13 on
page 17 and 2.2.18 on page 9), we can also take a sound and complete process theory
P, and replace some of its axioms by some new axioms that exactly correspond to the
equalities of P that are used to prove the completeness of P. The resulting new theory
will then also be sound and complete.
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bacω= a USD1

bx · ycω= bxcω· y USD2

bx+ ycω= bxcω+ bycω USD3

bσrel(x)cω= δ USD4

Table 18: Additional axioms for the ultimate start delay.

For an example of this method, see Corollaries 2.6.21 and 2.6.22 below. Furthermore,
this method is used in the proofs of Corollaries 2.8.25, 2.8.26, 3.6.17, 3.6.18, 3.7.20,
3.7.21, 3.7.26, and 3.7.27.

Corollary 2.6.21 (Soundness of BPAdrt–ID + USD1–USD4)
The set of closed BPAdrt–ID terms modulo bisimulation equivalence is a model of BPAdrt–ID
+ USD1–USD4.

Proof This follows directly from the soundness of BPA+drt–ID (see Theorem 2.6.14 on
page 38) and the fact that Axioms USD1–USD4 are derivable in BPA+drt–ID (see Proposi-
tion 2.6.9 on page 34). �

Corollary 2.6.22 (Completeness of BPAdrt–ID + USD1–USD4)
If we add Axioms USD1–USD4 of Table 18 to BPAdrt–ID, we again have a complete axiom-
atization of the set of closed BPAdrt–ID terms modulo bisimulation equivalence.

Proof Careful inspection of the dependencies between the proofs in this section re-
veals that the proof of Theorem 2.6.17 only relies upon RSP(USD) to ensure Proposition
2.6.9(i)–(iv). So, we obviously do not need RSP(USD) anymore if we add the corresponding
Axioms USD1–USD4. Note that in this way we get a purely equational axiomatization (i.e.
without conditional axioms or principles). �

2.7 Soundness and Completeness of BPA−drt

Definition 2.7.1 (Signature of BPA−drt)
The signature of BPA−drt consists of the undelayable atomic actions {a|a ∈ A}, the unde-
layable deadlock constant δ, the immediate deadlock constant δ̇, the alternative composi-
tion operator +, the sequential composition operator ·, the time unit delay operator σrel,
and the “now” operator νrel.

Definition 2.7.2 (Axioms of BPA−drt)
The process algebra BPA−drt is axiomatized by the axioms of BPA−drt–ID given in Defini-
tion 2.5.2 on page 22 and Axioms DRTSID, A6ID, A7ID, and DCSID shown in Table 19 on
the following page: BPA−drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4
+ DCSID.
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σrel(δ̇) = δ DRTSID

x+ δ̇ = x A6ID

δ̇ · x = δ̇ A7ID

νrel(δ̇) = δ̇ DCSID

Table 19: Axioms for δ̇.

Remark 2.7.3 (A6ID versus A6)
Note that in a setting with immediate deadlock we do not have anymore that x+ δ = x,
as δ̇+ δ = δ. We do however still have a+ δ = a. See also Remark 2.3.3 on page 12 and
Remark 2.5.3 on page 22.

Remark 2.7.4 (Derivability of DRT3 and DRT5)
Note that from Axiom A6ID, DRT1, DRT2, and DRTSID we can derive Axiom DRT3 and
DRT5, as we have:

δ · x = σrel(δ̇) · x = σrel(δ̇ · x) = σrel(δ̇) = δ

and, similarly:

σrel(x) + δ = σrel(x) + σrel(δ̇) = σrel(x+ δ̇) = σrel(x)

However, we still choose to include DRT3 and DRT5 even for theories that contain δ̇, as
our goal is not to find a minimal axiomatization, but instead to find a convenient one
(with regard to ease of proofs and calculations).

Definition 2.7.5 (Summation Convention with Respect to Immediate Deadlock)
In a setting with immediate deadlock, we will use the convention that a summation over
the empty set yields the immediate deadlock:∑

i∈∅
ti = δ̇.

Definition 2.7.6 (Semantics of BPA−drt)
The semantics of BPA−drt are given by the term deduction systemT(BPA−drt) induced by the
deduction rules for BPA−drt–ID given in Definition 2.5.4 on page 23, minus the deduction
rule σrel(x)

σ→ x, plus the deduction rules given in Table 20 on the following page.

Definition 2.7.7 (Bisimulation for BPA−drt)
Bisimulation for BPA−drt is defined as follows; a binary relation R on closed BPA−drt terms
is a bisimulation if the following transfer conditions hold for all closed BPA−drt terms p
and q:

(i). If RS(p, q) and T(BPA−drt) î p a→ p′, where a ∈ A, then there exists a closed term q′,
such that T(BPA−drt) î q a→ q′ and RS(p′, q′),
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ID(δ̇)
ID(x)

ID(x · y)
ID(x), ID(y)

ID(x+ y)
¬ID(x)
σrel(x)

σ→ x

Table 20: Deduction rules for ID.

(ii). If RS(p, q) and T(BPA−drt) î p σ→ p′, then there exists a closed term q′, such that
T(BPA−drt) î q σ→ q′ and RS(p′, q′),

(iii). If RS(p, q) and T(BPA−drt) î p
a→√, where a ∈ A, then T(BPA−drt) î q

a→√,

(iv). If RS(p, q) and T(BPA−drt) î ID(p), then T(BPA−drt) î ID(q).

Two BPA−drt terms p and q are bisimilar, notation p ∼BPA−drt
q, if there exists a bisimulation

relation R such that R(p, q).

Definition 2.7.8 (Bisimulation Model for BPA−drt)
The bisimulation model for BPA−drt is defined in the same way as for BPA. Replace “BPA”
by “BPA−drt” in Definition 2.2.11 on page 8.

Definition 2.7.9 (Basic Terms of BPA−drt)
We define (σ,δ, δ̇)-basic terms inductively as follows:

(i). Immediate deadlock δ̇ is a (σ,δ, δ̇)-basic term,

(ii). if a ∈ Aδ, then a is a (σ,δ, δ̇)-basic term,

(iii). if a ∈ Aδ and t is a (σ,δ, δ̇)-basic term, then a · t is a (σ,δ, δ̇)-basic term,

(iv). if t and s are (σ,δ, δ̇)-basic terms, then t + s is a (σ,δ, δ̇)-basic term,

(v). if t is a (σ,δ, δ̇)-basic term, then σrel(t) is a (σ,δ, δ̇)-basic term.

From now on, if we speak of basic terms in the context of BPA−drt, we mean (σ,δ, δ̇)-basic
terms.

Definition 2.7.10 (Number of Symbols of a BPA−drt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = 1,

(iii). for closed BPAdrt terms x and y, we define n(x+ y) = n(x · y) = n(x) + n(y) + 1,

(iv). for a closed BPAdrt term x, we define n(σrel(x)) = n(νrel(x)) = n(x) + 1.

Theorem 2.7.11 (Elimination for BPA−drt)
Let t be a closed BPA−drt term. Then there is a basic term s such that BPA−drt ` t = s.
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(x+ y) · z → x · z + y · z RA4

(x · y) · z → x · (y · z) RA5

σrel(x) · y → σrel(x · y) RDRT2

δ̇ · x→ δ̇ RA7ID

νrel(a) → a RDCS1

νrel(x+ y) → νrel(x) + νrel(y) RDCS2

νrel(x · y) → νrel(x) · y RDCS3

νrel(σrel(x)) → δ RDCS4

νrel(δ̇) → δ̇ RDCSID

Table 21: Term rewriting system for BPA−drt.

Proof The term rewriting system of Table 21 is associated to BPA−drt by assigning a
direction to the axioms. With the method of the lexicographical path ordering it is easily
proven that this term rewriting system is strongly normalizing. Give · the lexicographical
status for the first argument and define the following well-founded partial ordering on
constant and function symbols:

νrel > · > +
∨ ∨
δ σrel

We give the following reductions for the rewriting rules RA7ID and RDCSID:

δ̇ · x�lpo δ̇ ·? x
�lpo δ̇

νrel(δ̇) �lpo νrel
?(δ̇)

�lpo δ̇

Note that the reductions for the other rewriting rules have already been given in the
proofs of previous elimination theorems.

Next, we will prove that the normal forms of the closed BPA−drt terms are basic terms.
Thereto, suppose that s is a normal form of some closed BPA−drt term. Furthermore, sup-
pose that s is not a basic term. Let s′ denote the smallest subterm of s which is not a basic
term. Then we can prove that s′ is not a normal form by case analysis. We distinguish
all possible cases:

(i). s′ is an atomic action, δ, or δ̇. But then s′ is a basic term. This is in contradiction
with the assumption that s′ is not a basic term, so this case does not occur.

(ii). s′ is of the form s′1 ·s′2 for basic terms s′1 and s′2. With case analysis on the structure
of basic term s′1:

(a) If s′1 is δ̇ then rewriting rule RA7ID can be applied, and hence s′ is not a normal
form.
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(b) If s′1 is of the form a for some a ∈ Aδ, then s′1 · s′2 is a basic term, and so s′ is a
basic term which again contradicts the assumption that s′ is not a basic term.
This case can therefore not occur.

(c) If s′1 is of the form a · t for some a ∈ Aδ and some basic term t, then rewriting
rule RA5 can be applied. So, s′ is not a normal form.

(d) If s′1 is of the form t1+ t2 for t1 and t2 basic terms. Then rewriting rule RA4 is
applicable. Therefore, s′ is not a normal form.

(e) If s′1 is of the form σrel(t) for some basic term t. Then rewriting rule RDRT2 is
applicable. So, s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. In this case s′ would be a basic
term, which contradicts the assumption that s′ is not a basic term. Therefore, this
case cannot occur.

(iv). s′ is of the form σrel(t) for some basic term t. But then s′ is basic term too, so the
case does not occur.

(v). s′ is of the form νrel(t) for some basic term t. But then one of RDCS1–RDCS4 or
RDCSID is applicable, so s′ is not a normal form.

In any case that can occur it follows that s′ is not a normal form. Since s′ is a subterm of
s, we conclude that s is not a normal form. This contradicts the assumption that s is a
normal form. From this contradiction we conclude that s is a basic term, which completes
the proof. �

Remark 2.7.12 (Elimination for BPA−drt)
Elimination for a slightly different version of BPA−drt is also claimed (without proof) in
Section 3.4 of [10].

Theorem 2.7.13 (Soundness of BPA−drt)
The set of closed BPA−drt terms modulo bisimulation equivalence is a model of BPA−drt.

Proof For soundness of Axioms A1–A5, DRT1–DRT4, and DCS1–DCS4 we refer to the
proof of soundness of BPA−drt–ID. To extend these proofs from BPA−drt–ID to BPA−drt, we
have to check that the bisimulations given in previous soundness proofs respect the ID
predicate (as required by transfer condition (iv.) in 2.7.7 on page 46). However, as the
fact that they do can be easily checked, we will not give details.

It remains to prove soundness of the axioms from Table 19 on page 46. For all axioms,
we look at the transitions of both sides at the same time.

Axiom DRTSID Take the relation:

R = {(σrel(δ̇), δ)}
We look at the transitions of both sides at the same time. We have σrel(δ̇)3 and
δ3 . Also, ¬ID(σrel(δ̇)) and ¬ID(δ).

Axiom A6ID Take the relation:

R = {(s, s), (s + δ̇, s)∣∣s ∈ C(BPA−drt)
}

We look at the transitions of both sides at the same time. We have s + δ̇→ p iff
s→ p, and note that (p,p) ∈ R. Also, ID(s + δ̇) iff ID(s) ∧ ID(δ̇) iff ID(s).
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Axiom A7ID Take the relation:

R = {(δ̇ · s, δ̇)∣∣s ∈ C(BPA−drt)
}

We look at the transitions of both sides at the same time. We have δ̇· s3 and δ̇3 .
Also, ID(δ̇ · s) and ID(δ̇).

Axiom DCSID Take the relation:
R = {(νrel(δ̇), δ̇)}

We look at the transitions of both sides at the same time. We have νrel(δ̇)3 and
δ̇3 . Also, ID(νrel(δ̇)) and ID(δ̇).

�

Remark 2.7.14 (Soundness of BPA−drt)
Soundness of a slightly different version of BPA−drt is also claimed (without proof) in Sec-
tion 3.5 of [10].

Lemma 2.7.15 (Towards Completeness of BPA−drt)
Let x be a closed BPA−drt term and let a ∈ A. Then we have:

(i). T(BPA−drt) î x a→√ =⇒ BPA−drt ` x = a+ x,
(ii). T(BPA−drt) î x a→ y =⇒ BPA−drt ` x = a · y + x,
(iii). T(BPA−drt) î ID(x) =⇒ BPA−drt ` x = δ̇,

(iv). T(BPA−drt) î ¬ID(x) =⇒ BPA−drt ` x+ δ = x,

(v). T(BPA−drt) î x
σ
3 =⇒ BPA−drt ` x = νrel(x),

(vi). T(BPA−drt) î x σ→ y =⇒ BPA−drt ` x = σrel(y) + νrel(x),

(vii). T(BPA−drt) î x
a→ y =⇒ n(x) > n(y),

(viii). T(BPA−drt) î x σ→ y =⇒ n(x) > n(y).

Proof For part (i)–(vi) we assume, by Theorem 2.7.11 and Theorem 2.7.13, without
loss of generality, that x is a basic term, and apply induction on the structure of basic
terms. For part (vii) and (viii) we again have to use induction on the general structure of
terms.

(i). Suppose that T(BPA−drt) î x a→√. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x

a→√, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ.
Because T(BPA−drt) î x

a→√, it must be the case that b ≡ a. So we have BPA−drt `
x = b = b + b = a + b = a + x. Case 3: x ≡ b · x′, where b ∈ Aδ and x′ is a
basic term. This is in contradiction with T(BPA−drt) î x a→√, so this case does not
occur. Case 4: x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt) î x a→√,
necessarily T(BPA−drt) î x′ a→

√
or T(BPA−drt) î x′′ a→

√
. Therefore, by the induction

hypothesis, BPA−drt ` x′ = a + x′ or BPA−drt ` x′′ = a + x′′. But then in both cases
BPA−drt ` x = x′ + x′′ = a + x′ + x′′ = a + x. Case 5: x ≡ σrel(x′), where x′ is a basic
term. This is in contradiction with T(BPA−drt) î x a→√, so this case does not occur.
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(ii). Suppose that T(BPA−drt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x a→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPA−drt) î x a→ y, so this case does not occur. Case 3:
x ≡ b · x′, where b ∈ Aδ and x′ is a basic term. Then, because T(BPA−drt) î x a→ y, it
must be that b ≡ a and x′ ≡ y. So, BPA−drt ` x = x+x = b · x′ +x = a ·y+x. Case 4:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt) î x

a→ y, necessarily
T(BPA−drt) î x′

a→ y or T(BPA−drt) î x′′
a→ y. Therefore, by the induction hypothe-

sis, BPA−drt ` x′ = a · y + x′ or BPA−drt ` x′′ = a · y + x′′. But then in both cases
BPA−drt ` x = x′ + x′′ = a · y + x′ + x′′ = a · y + x. Case 5: x ≡ σrel(x′), where x′ is
a basic term. This is in contradiction with T(BPA−drt) î x a→ y, so this case does not
occur.

(iii). Suppose that T(BPA−drt) î ID(x). Case 1: x ≡ δ̇. Then we have BPA−drt ` x = δ̇
is trivially fulfilled. Case 2: x ≡ a, where a ∈ Aδ. This is in contradiction with
T(BPA−drt) î ID(x), so this case does not occur. Case 3: x ≡ a · x′, where a ∈ Aδ
and x′ is a basic term. This is in contradiction with T(BPA−drt) î ID(x), so this case
does not occur. Case 4: x ≡ x′ +x′′, where x′ and x′′ are basic terms. Then, because
T(BPA−drt) î ID(x), it must be the case that T(BPA−drt) î ID(x′), ID(x′′). So, by the
induction hypothesis, we have that BPA−drt ` x′ = δ̇, x′′ = δ̇. But then also BPA−drt `
x = x′ + x′′ = δ̇ + δ̇ = δ̇. Case 5: x ≡ σrel(x′), where x′ is a basic term. This is in
contradiction with T(BPA−drt) î ID(x), so this case does not occur.

(iv). Suppose that T(BPA−drt) î ¬ID(x). Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î ¬ID(x), so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ.
Then we have BPA−drt ` x+ δ = a+ δ = a = x. Case 3: x ≡ a · x′, where a ∈ Aδ and
x′ is a basic term. Then BPA−drt ` x+ δ = a · x′ + δ = a · x′ + δ · x′ = (a+ δ) · x′ =
a · x′ = x. Case 4: x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt) î
¬ID(x), necessarily T(BPA−drt) î ¬ID(x′) or T(BPA−drt) î ¬ID(x′′). Therefore, by
the induction hypothesis, BPA−drt ` x′ + δ = x′ or BPA−drt ` x′′ + δ = x′′. So, in both
cases, BPA−drt ` x+ δ = x′ + x′′ + δ = x′ + x′′ = x. Case 5: x ≡ σrel(x′), where x′ is a
basic term. Then BPA−drt ` x+ δ = σrel(x′) + δ = σrel(x′) = x.

(v). Suppose that T(BPA−drt) î x
σ
3 . Case 1: x ≡ δ̇. By Axiom DCSID we have BPA−drt `

x = δ̇ = νrel(δ̇) = νrel(x). Case 2: x ≡ a, where a ∈ Aδ. We have BPA−drt ` x = a =
νrel(a) = νrel(x). Case 3: x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. We have
BPA−drt ` x = a · x′ = νrel(a) · x′ = νrel(a · x′) = νrel(x). Case 4: x ≡ x′ + x′′, where
x′ and x′′ are basic terms. As T(BPA−drt) î x

σ
3 , necessarily T(BPA−drt) î x′

σ
3 and

T(BPA−drt) î x′′
σ
3 . Therefore, by the induction hypothesis, BPA−drt ` x′ = νrel(x′)

and BPA−drt ` x′′ = νrel(x′′). But then also BPA−drt ` x = x′+x′′ = νrel(x′)+νrel(x′′) =
νrel(x′ + x′′) = νrel(x). Case 5: x ≡ σrel(x′), where x′ is a basic term with ¬ID(x).
This is in contradiction with T(BPA−drt) î x

σ
3 , so this case does not occur. Case 6:

x ≡ σrel(x′), where x′ is a basic term. Then, by T(BPA−drt) î x
σ
3 , it must be the

case that ID(x′). So, by (iii), we have that BPA−drt ` x′ = δ̇. Therefore, BPA−drt ` x =
σrel(x′) = σrel(δ̇) = δ = νrel(σrel(x′)) = νrel(x).

(vi). Suppose that T(BPA−drt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This
is in contradiction with T(BPA−drt) î x σ→ y, so this case does not occur. Case 3:
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x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. This is in contradiction with
T(BPA−drt) î x σ→ y, so this case does not occur. Case 4: x ≡ x′ + x′′, where x′ and
x′′ are basic terms. As T(BPA−drt) î x σ→ y, necessarily (1) T(BPA−drt) î x′ σ→ y, x′′

σ
3 ,

or, (2) T(BPA−drt) î x′
σ
3 , x′′ σ→ y, or, (3) T(BPA−drt) î x′ σ→ y′, x′′ σ→ y′′ where y ≡

y′ + y′′. In the first case, by the induction hypothesis, we have BPA−drt ` x′ =
σrel(y) + νrel(x′), and, by (v), BPA−drt ` x′′ = νrel(x′′). Therefore, BPA−drt ` x =
x′ + x′′ = σrel(y) + νrel(x′) + νrel(x′′) = σrel(y) + νrel(x′ + x′′) = σrel(y) + νrel(x).
The second case is treated analogously. In the third case we have, by the induc-
tion hypothesis, BPA−drt ` x′ = σrel(y′) + νrel(x′), x′′ = σrel(y′′) + νrel(x′′). There-
fore we have BPA−drt ` x = x′ + x′′ = σrel(y′) + νrel(x′) + σrel(y′′) + νrel(x′′) =
σrel(y′ + y′′) + νrel(x′ + x′′) = σrel(y) + νrel(x). Case 5: x ≡ σrel(x′), where x′ is
a basic term. Because T(BPA−drt) î x σ→ y, it must be the case that x′ ≡ y. So we
have BPA−drt ` x = σrel(x′) = σrel(y) = σrel(y) + δ = σrel(y) + νrel(σrel(x′)) =
σrel(y) + νrel(x).

(vii). Suppose that T(BPA−drt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x σ→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPA−drt) î x a→ y, so this case does not occur. Case 3:
x ≡ x′ · x′′, for certain terms x′ and x′′. Then, because T(BPA−drt) î x a→ y, we ei-
ther have T(BPA−drt) î x′ a→

√
and y ≡ x′′, or we have T(BPA−drt) î x′ a→ x′′′ and

y ≡ x′′′ · x′′ for some term x′′′. In the first case, we have n(x) = n(x′ · x′′) =
n(x′)+n(x′′)+1 > n(x′′) = n(y), and in the second we can apply the induction hy-
pothesis to arrive at n(x′) > n(x′′′), so we get n(x) = n(x′·x′′) = n(x′)+n(x′′)+1 >
n(x′′′)+n(x′)+1 = n(x′′′ ·x′′) = n(y). Case 4: x ≡ x′ +x′′, for certain terms x′ and
x′′. Since T(BPA−drt) î x

a→ y, necessarily T(BPA−drt) î x′
a→ y or T(BPA−drt) î x′′

a→ y.
Therefore, by the induction hypothesis, n(x′) > n(y) or n(x′′) > n(y). In both
cases n(x) = n(x′ + x′′) = n(x′) + n(x′′) + 1 > n(y). Case 5: x ≡ σrel(x′), for a
certain term x′. This is in contradiction with T(BPA−drt) î x a→ y, so this case does
not occur. Case 6: x ≡ νrel(x′), for a certain term x′. Since T(BPA−drt) î x a→ y, nec-
essarily T(BPA−drt) î x′ a→ y. Therefore, by the induction hypothesis, n(x′) > n(y).
So, n(x) = n(νrel(x′)) = n(x′) + 1 > n(y).

(viii). Suppose that T(BPA−drt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x

σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This is
in contradiction with T(BPA−drt) î x

σ→ y, so this case does not occur. Case 3: x ≡ x′·
x′′, for certain terms x′ and x′′. Then necessarily, x′ σ→ x′′′ and y ≡ x′′′ ·x′′ for some
term x′′′. We now can apply the induction hypothesis to arrive at n(x′) > n(x′′′), so
we getn(x) = n(x′·x′′) = n(x′)+n(x′′)+1 > n(x′′′)+n(x′′)+1 = n(x′′′·x′′) = n(y).
Case 4: x ≡ x′ + x′′, for certain terms x′ and x′′. As T(BPA−drt) î x σ→ y, necessarily
(1) T(BPA−drt) î x′ σ→ y, x′′

σ
3 , or, (2) T(BPA−drt) î x′

σ
3 , x′′ σ→ y, or, (3) T(BPA−drt) î

x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′ + y′′. In the first case, by the induction hypothesis,
n(x′) > n(y). So n(x) = n(x′ +x′′) = n(x′)+n(x′′)+1 > n(y). The second case is
treated analogously. In the third case, by the induction hypothesis, n(x′) > n(y′)
and n(x′′) > n(y′′). So n(x) = n(x′+x′′) = n(x′)+n(x′′)+1 > n(y′)+n(y′′)+1 =
n(y). Case 5: x ≡ σrel(x′), for a certain term x′. Because T(BPA−drt) î x

σ→ y, it
must be the case that x′ ≡ y. Then we have n(x) = n(σrel(x′)) = n(x′) + 1 =
n(y) + 1 > n(y). Case 6: x ≡ νrel(x′), for a certain term x′. This is in contradiction
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with T(BPA−drt) î x σ→ y, so this case does not occur.

�

Theorem 2.7.16 (Completeness of BPA−drt)
The axiom system BPA−drt is a complete axiomatization of the set of closed BPA−drt terms
modulo (strong) bisimulation equivalence.

Proof Suppose s + t ∼BPA−drt
t. We will prove, with induction on the structure of basic

term s, that BPA−drt ` s + t = t. By Theorem 2.7.11 we can restrict ourselves to basic
terms without loss of generality. The proof is done with induction on n(s), using Lemma
2.7.15(vii)–(viii) and case distinction on the form of basic term s.

(i). s ≡ δ̇. Using Axiom A6ID we have BPA−drt ` s + t = δ̇+ t = t + δ̇ = t.

(ii). s ≡ δ. Then, since for u ∈ Aσ we have T(BPA−drt) î s
u
3 , also T(BPA−drt) î s + t u→ p

iff T(BPA−drt) î t u→ p, and for a ∈ A, T(BPA−drt) î s + t a→
√

iff T(BPA−drt) î t a→
√

.
Furthermore, we have ¬ID(s+ t), since T(BPA−drt) î ¬ID(s). Since s+ t ∼BPA−drt

t, we
also have T(BPA−drt) î ¬ID(t). Using Lemma 2.7.15(iv) we have BPA−drt ` s + t =
δ+ t = t + δ = t.

(iii). s ≡ a, where a ∈ A. From the deduction rules we have T(BPA−drt) î s
a→√ and

T(BPA−drt) î s+t
a→√. Since s+t ∼BPA−drt

t we also have T(BPA−drt) î t
a→√. By Lemma

2.7.15(i) we obtain BPA−drt ` t = a+ t. So, BPA−drt ` s + t = a+ t = t.

(iv). s ≡ δ · s′, where s′ is a basic term. Then we have BPA−drt ` s = δ · s′ = δ and, using
(ii), BPA−drt ` s + t = t.

(v). s ≡ a · s′, where a ∈ A and s′ is a basic term. From the deduction rules we obtain
T(BPA−drt) î s

a→ s′ and T(BPA−drt) î s+ t
a→ s′. Since s+ t ∼BPA−drt

t, we then also have
T(BPA−drt) î t a→ t′ for some t′ such that s′ ∼BPA−drt

t′. By the induction hypothesis we
have BPA−drt ` s′ = t′. From Lemma 2.7.15(ii) we have BPA−drt ` t = a · t′ + t. So,
BPA−drt ` s + t = a · s′ + t = a · t′ + t = t.

(vi). s ≡ s′ + s′′, where s′ and s′′ are basic terms. Since s′ + s′′ + t ∼BPA−drt
t, we also have

s′ + t ∼BPA−drt
t and s′′ + t ∼BPA−drt

t. By the induction hypothesis we then have BPA−drt `
s′ + t = t, s′′ + t = t. So, BPA−drt ` s + t = s′ + s′′ + t = s′ + t = t.

(vii). s ≡ σrel(s′), where s′ is a basic term. From the deduction rules we have T(BPA−drt) î
σrel(s′)

σ→ s′ and since s + t ∼BPA−drt
t we also have T(BPA−drt) î t σ→ t′, s + t σ→ s′ + t′

for some t′ such that s′ + t′ ∼BPA−drt
t′. By Lemma 2.7.15(vi) we have BPA−drt ` t =

σrel(t′) + νrel(t). By the induction hypothesis we have BPA−drt ` s′ + t′ = t′. So,
BPA−drt ` s + t = σrel(s′) + t = σrel(s′) + σrel(t′) + νrel(t) = σrel(s′ + t′) + νrel(t) =
σrel(t′) + νrel(t) = t.

�

Remark 2.7.17 (Completeness of BPA−drt)
Completeness of a slightly different version of BPA−drt is also claimed (without proof) in
Section 3.5 of [10].
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2.8 Soundness and Completeness of BPA+drt

Definition 2.8.1 (Signature of BPAdrt)
The signature of BPAdrt consists of the undelayable atomic actions {a|a ∈ A}, the de-
layable deadlock actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable
deadlock constant δ, the immediate deadlock constant δ̇, the alternative composition oper-
ator +, the sequential composition operator ·, the time unit delay operator σrel, the “now”
operator νrel, and the unbounded start delay operator b cω.

Definition 2.8.2 (Axioms of BPAdrt)
The process algebra BPAdrt is axiomatized by the axioms of BPA−drt given in Defini-
tion 2.7.2 on page 45, and Axioms ATS and USD shown in Table 14 on page 32: BPAdrt =
A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID + ATS + USD.

Definition 2.8.3 (Recursion Principle for BPAdrt)
Next to the axioms mentioned in Definition 2.8.2, the system BPA+drt also contains the
recursion principle RSP(USD) shown in Table 15 on page 33. For more information on
recursion principles and their status with respect to axioms, see [14].

Definition 2.8.4 (Semantics of BPAdrt)
The semantics of BPAdrt are given by the term deduction systemT(BPAdrt) induced by the
deduction rules for BPA−drt given in Definition 2.7.6 on page 46 and the deduction rules
given in Table 16 on page 33.

Remark 2.8.5 (Semantics of BPAdrt)
Note that for any closed BPAdrt term x, we have that ¬ID(bxcω). Hence, there is no de-
duction rule for ID(bxcω).

Definition 2.8.6 (Bisimulation and Bisimulation Model for BPAdrt)
Bisimulation for BPAdrt and the corresponding bisimulation model are defined in the
same way as for BPA−drt and BPA respectively. Replace “BPA−drt” by “BPAdrt” in Defini-
tion 2.7.7 on page 46 and “BPA” by “BPAdrt” in Definition 2.2.11 on page 8.

Definition 2.8.7 (Basic Terms of BPAdrt)
We define (σ,δ,δ, δ̇)-basic terms inductively as follows:

(i). Immediate deadlock δ̇ is a (σ,δ, δ, δ̇)-basic term,

(ii). If a ∈ Aδ, then a and a are (σ,δ,δ, δ̇)-basic terms,

(iii). if a ∈ Aδ and t is a (σ,δ,δ, δ̇)-basic term, then a · t and a · t are (σ,δ, δ, δ̇)-basic
terms,

(iv). if t and s are (σ,δ, δ, δ̇)-basic terms, then t + s is a (σ,δ,δ, δ̇)-basic term,

(v). if t is a (σ,δ, δ, δ̇)-basic term, then σrel(t) is a (σ,δ, δ, δ̇)-basic term.

From now on, if we speak of basic terms in the context of BPAdrt, we mean (σ,δ,δ, δ̇)-
basic terms.
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Theorem 2.8.8 (General Form of Basic Terms of BPAdrt)
Modulo the commutativity and associativity of the +, and modulo superfluous δ̇ sum-
mands, all basic terms t of BPAdrt are of the form:

t ≡
∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
σrel(vo)

for m,n,p, q, r ∈ N, ai, bj, ck, dl ∈ Aδ, and basic terms si, ul, and vo.

Proof Trivial, by inspection of the definition of basic terms, Definition 2.8.7. Observe
that the general form of basic terms is closed under the formation rules gives in Defini-
tion 2.8.7. �

Remark 2.8.9 (General Form of Basic Terms of BPAdrt)
Note that the case t = δ̇ is generated when we take m = n = p = q = r = 0. See also
Definition 2.7.5.

Definition 2.8.10 (Number of Symbols of a BPAdrt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = n(a) = 1,

(iii). for closed BPAdrt terms x and y, we define n(x+ y) = n(x · y) = n(x) + n(y) + 1,

(iv). for a closed BPAdrt term x, we define n(σrel(x)) = n(νrel(x)) = n(bxcω) = n(x)+1.

Proposition 2.8.11 (Properties of BPA+drt, Part I)
For BPAdrt terms x and y, and any a ∈ Aδ, we have the following equalities:

(i). BPA+drt ` bacω= a
(ii). BPA+drt ` bx · ycω= bxcω· y
(iii). BPA+drt ` bx+ ycω= bxcω+ bycω

(iv). BPA+drt ` bσrel(x)cω= δ
(v). BPA+drt ` bδ̇cω= δ
(vi). BPAdrt ` νrel(a) = a
(vii). BPAdrt ` bxcω+ δ = bxcω

Proof The proofs for equality (i)–(iv) and (vi) given in Proposition 2.6.9 on page 34,
with respect to BPAdrt–ID, remain valid in the setting of BPAdrt, as can be easily checked.

Equality (v) and (vii) do not appear in Proposition 2.6.9. Consider the following com-
putation for equality (v):

BPAdrt ` δ = bδcω
= νrel(δ) +σrel(bδcω)
= δ+ σrel(δ)
= σrel(δ)
= δ̇+ σrel(δ)
= νrel(δ̇) +σrel(δ)
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Using RSP(USD) we obtain:
BPA+drt ` δ = bδ̇cω

Finally, consider the following computation for equality (vii):

BPAdrt ` bxcω+ δ = νrel(x) +σrel(bxcω) + δ = νrel(x) + σrel(bxcω) = bxcω

Note the use of Axiom DRT5 in the second step. �

Proposition 2.8.12 (Properties of BPA+drt, Part II)
For any BPAdrt term x we have the following equality:

BPA+drt ` δ · x = δ

Proof Using Proposition 2.8.11(ii) we derive:

BPA+drt ` δ · x = bδcω· x = bδ · xcω= bδcω= δ

�

Lemma 2.8.13 (Representation of BPA+drt Terms)
Let t be a basic term. Then either:

(i). BPA+drt ` t = δ̇, or,

(ii). BPA+drt ` t = νrel(t) + δ, or,

(iii). BPA+drt ` t = btcω, or,

(iv). there exists a basic term s such that BPA+drt ` t = νrel(t) + σrel(s) and n(s) < n(t).

Proof Let t be a basic term. By Theorem 2.5.9, we may now proceed by case analysis
on the form of basic terms. Suppose, by Theorem 2.8.8, that t has the following general
form:

t ≡
∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
σrel(vo)

for m,n,p, q, r ∈ N, ai, bj, ck, dl ∈ Aδ, and basic terms si, ul, and vo. We distinguish four
cases:

(i). There are no summands: p = q =m = n = r = 0.

(ii). Every, and at least one, summand starts with an undelayable action: m+n ≥ 1 and
p = q = r = 0.

(iii). Every, and at least one, summand starts with a delayable action: p + q ≥ 1 and
m = n = r = 0.

(iv). Neither of the above; there are both summands that start with delayable action and
ones the start with undelayable actions, or there are summands that start with the
time unit delay operator: p+ q + r ≥ 1 and m+ n + r ≥ 1

As can be easily seen, this covers all cases. We now prove that the four cases we distin-
guish exactly correspond to the four cases in the formulation of the theorem:
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(i). We have p = q =m = n = r = 0. So, by Definition 2.7.5, t ≡ δ̇ and BPA+drt ` t = δ̇.

(ii). We have m+ n ≥ 1 and p = q = r = 0. So:

t ≡
∑
i<m
ai · si +

∑
j<n
bj

for m,n ∈ N, ai, bj ∈ Aδ, and basic terms si. Then we have the following computa-
tion:

BPA+drt ` t =
∑
i<m
ai · si +

∑
j<n
bj =

∑
i<m
νrel(ai) · si +

∑
j<n
νrel(bj)

=
∑
i<m
νrel(ai · si) +

∑
j<n
νrel(bj) = νrel

∑
i<m
ai · si +

∑
j<n
bj


= νrel

∑
i<m
ai · si +

∑
j<n
(bj+ δ)

 = νrel

∑
i<m
ai · si +

∑
j<n
bj+ δ


= νrel(t + δ) = νrel(t) + νrel(δ) = νrel(t) + δ

(iii). We have p+ q ≥ 1 and m = n = r = 0. So:

t ≡
∑
k<p
ck · uk +

∑
l<q
dl

for p,q ∈ N, ck, dl ∈ Aδ, and basic terms uk. Using Proposition 2.8.11(i)–(iii) we then
have the following computation:

BPA+drt ` t =
∑
k<p
ck · uk +

∑
l<q
dl =

∑
k<p
bckcω· uk +

∑
l<q
bdlcω

=
∑
k<p
bck · ukcω+

∑
l<q
bdlcω=

∑
k<p
ck · uk +

∑
l<q
dl

ω
= btcω

(iv). We have p+ q + r ≥ 1 and m+ n + r ≥ 1. So:

t ≡
∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
σrel(vo)

for m,n,p, q, r ∈ N, ai, bj, ck, dl ∈ Aδ, and basic terms si, ul, and vo. Then we have
the following computation:

BPA+drt ` t =
∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
σrel(vo)

=
∑
i<m
νrel(ai) · si +

∑
j<n
νrel(bj) +∑

k<p
bckcω· uk +

∑
l<q
bdlcω+

∑
o<r
σrel(vo)
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=
∑
i<m
νrel(ai · si) +

∑
j<n
νrel(bj) +∑

k<p
(νrel(ck) + σrel(bckcω)) · uk +

∑
l<q
(νrel(dl) + σrel(bdlcω)) +∑

o<r
σrel(vo)

=
∑
i<m
νrel(ai · si) +

∑
j<n
νrel(bj) +∑

k<p
(νrel(ck) + σrel(ck)) · uk +

∑
l<q
(νrel(dl) +σrel(dl)) +∑

o<r
σrel(vo)

=
∑
i<m
νrel(ai · si) +

∑
j<n
νrel(bj) +∑

k<p
(νrel(ck) · uk + σrel(ck) · uk) +

∑
l<q
(νrel(dl) + σrel(dl)) +∑

o<r
σrel(vo)

=
∑
i<m
νrel(ai · si) +

∑
j<n
νrel(bj) +∑

k<p
(νrel(ck · uk) + σrel(ck · uk)) +

∑
l<q
(νrel(dl) + σrel(dl)) +∑

o<r
σrel(vo)

= νrel

∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
ck · uk +

∑
l<q
dl

+
σrel

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
vo


= νrel

∑
i<m
ai · si +

∑
j<n
bj+∑

k<p
(ck · uk + σrel(bckcω) · uk) +

∑
l<q
(dl + σrel(bdlcω)) +

∑
o<r
σrel(vo)

)
+

σrel

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
vo


= νrel

∑
i<m
ai · si +

∑
j<n
bj+∑

k<p
(ck + σrel(bckcω)) · uk +

∑
l<q
(dl + σrel(bdlcω)) +
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∑
o<r
σrel(vo)

)
+

σrel

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
vo


= νrel

∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
bckcω· uk +

∑
l<q
bdlcω+

∑
o<r
σrel(vo)

+
σrel

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
vo


= νrel

∑
i<m
ai · si +

∑
j<n
bj+

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
σrel(vo)

+
σrel

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
vo


= νrel(t) + σrel(s)

Where we define:
s ≡

∑
k<p
ck · uk +

∑
l<q
dl +

∑
o<r
vo

Note that n(s) < n(t) is now trivially satisfied: every summand of s also appears as
a subterm of t, and bym+n+ r ≥ 1, t must contain summands that do not appear
in s. Therefore, t must contain at least 2 more symbols than s.

�

Lemma 2.8.14 (Simplified Representation of BPA+drt Terms)
Let t be a basic term. Then either:

(i). BPA+drt ` t = δ̇, or,

(ii). BPA+drt ` t = t + δ.

Proof This lemma follows almost immediately from Lemma 2.8.13; case (i) men-
tioned there corresponds to case (i) here, and cases (ii)–(iv) mentioned there correspond
to case (ii) here. We distinguish the four cases from Lemma 2.8.13:

(i). BPA+drt ` t = δ̇.

(ii). BPA+drt ` t = νrel(t) + δ. Then we have, using Axiom A3:

BPA+drt ` t = νrel(t) + δ = νrel(t) + δ+ δ = t + δ.

(iii). BPA+drt ` t = btcω. Then we have, using Proposition 2.8.11(vii):

BPA+drt ` t = btcω= btcω+ δ = t + δ.
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(iv). BPA+drt ` t = νrel(t) + σrel(s). Then we have, using Axiom DRT5:

BPA+drt ` t = νrel(t) +σrel(s) = νrel(t) + σrel(s) + δ = t + δ.

�

Remark 2.8.15 (Representation of BPA+drt Terms)
The main use of Lemmata 2.8.13 and 2.8.14 will be in induction proofs regarding regard-
ing the (yet to be treated) theories PA+drt and ACP+drt (see Sections 3.6 and 3.7).

Theorem 2.8.16 (Elimination for BPA+drt)
Let t be a closed BPAdrt term. Then there is a basic term s such that BPA+drt ` t = s.
Proof First a term rewriting system is given. Then, it is shown that this term rewriting
system is strongly normalizing and that the normal forms of the closed BPAdrt terms
are basic terms. The term rewriting system is given in Table 22. The rewriting rules

(x+ y) · z → x · z + y · z RA4

(x · y) · z → x · (y · z) RA5

σrel(x) · y → σrel(x · y) RDRT2

bacω→ a RATS

bacω→ a RUSD1

bx · ycω→ bxcω· y RUSD2

bx+ ycω→ bxcω+ bycω RUSD3

bσrel(x)cω→ δ RUSD4

bδ̇cω→ δ RUSD5

δ̇ · x→ δ̇ RA7ID

νrel(a) → a RDCS1

νrel(x+ y) → νrel(x) + νrel(y) RDCS2

νrel(x · y) → νrel(x) · y RDCS3

νrel(σrel(x)) → δ RDCS4

νrel(a) → a RDCS5

νrel(δ̇) → δ̇ RDCSID

Table 22: Term rewriting system for BPAdrt.

RA4, RA5, RDRT2, RATS, RA7ID, RDCS1–RDCS4, and RDCSID are obtained directly from
the axioms. The rewriting rules RUSD1–RUSD5 and RDCS5 are added to deal properly
with the recursive definition of ultimate start delay. The corresponding equalities are
derivable from the axioms as is shown in Proposition 2.8.11.

With the method of the lexicographical path ordering it is shown that the term rewrit-
ing system is strongly normalizing. Thereto the operator · is assigned the lexicographi-
cal status for the first argument and the following well-founded partial ordering on the
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signature of BPAdrt is defined:

b cω > a
∨

νrel > · > +
∨ ∨
a σrel

We give the following reduction for the rewriting rule RUSD5:

bδ̇cω�lpo bδ̇cω
?

�lpo δ

Note that the reductions for the other rewriting rules have already been given in the
proofs of previous elimination theorems.

It remains to prove that every normal form of a closed BPAdrt term is a basic term.
Suppose that s is the normal form of a closed BPAdrt term. Furthermore, suppose that s
is not a basic term and that s′ is the smallest subterm of s which is not a basic term. We
distinguish all possible cases:

(i). s′ is of the form a or a for some a ∈ Aδ, or of the form δ̇. Then s′ is clearly a basic
term, so this case does not occur.

(ii). s′ is of the form s1 · s2 for basic terms s1 and s2. With respect to basic term s1 the
following cases can be distinguished:

(a) s1 ≡ δ̇; then RA7ID is applicable, so s′ is not a normal form.

(b) s1 ≡ a for some a ∈ Aδ. Then s′ is a basic term. This contradicts the assump-
tion that s′ is not a basic term.

(c) s1 ≡ a for some a ∈ Aδ. Then s′ is a basic term, and we have again a contra-
diction.

(d) s1 ≡ a · s′1 for some a ∈ Aδ and basic term s′1. Then rewriting rule RA5 is
applicable, so s′ is not a normal form.

(e) s1 ≡ a · s′1 for some a ∈ Aδ and some basic term s′1. Then rewriting rule RA5
is applicable, so s′ is not a normal form.

(f) s1 ≡ s′1 + s′′1 for some basic terms s′1 and s′′2 . Then rewriting rule RA4 is appli-
cable, so s′ is not a normal form.

(g) s1 ≡ σrel(s′1) for some basic term s′1. Then rewriting rule RDRT2 is applicable,
so s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. Then s′ is a basic term itself, so
this case cannot happen.

(iv). s′ is of the form σrel(s′′) for some basic term s′′. Then again s′ is a basic term itself,
so this case cannot happen either.

(v). s′ is of the form νrel(s′′), where s′′ is a basic term. Then one of RDCS1–RDCS5 or
RDCSID can be applied, so s′ is not a normal form.
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(vi). s′ is of the form bs′′cω for some basic term s′′. Then one of RATS or RUSD1–RUSD5
can be applied, so s′ is not a normal form.

In every case s′ is a basic term or a rewriting rule is applicable. If s′ is a basic term this
contradicts the assumption that it is not. If a rewriting rule is applicable then s′ and s
are not a normal form. This contradicts the assumption that s is a normal form. From
this contradiction we conclude that s is a basic term. �

Remark 2.8.17 (Elimination for BPAdrt)
Elimination for a somewhat different version of BPAdrt is also claimed (without proof) in
Section 3.4 of [10].

Theorem 2.8.18 (Soundness of BPA+drt)
The set of closed BPAdrt terms modulo bisimulation equivalence is a model of BPA+drt.

Proof The soundness of each of the axioms of BPAdrt has already been proven in the
previous soundness theorems, so we do not repeat those proofs here. �

Remark 2.8.19 (Soundness of BPAdrt)
Soundness of a somewhat different version of BPAdrt is also claimed (without proof) in
Section 3.5 of [10].

Lemma 2.8.20 (Towards Completeness of BPA+drt)
Let x be a closed BPAdrt term and let a ∈ A. Then we have:

(i). T(BPAdrt) î x a→√ =⇒ BPA+drt ` x = a+ x,
(ii). T(BPAdrt) î x a→ y =⇒ BPA+drt ` x = a · y + x,
(iii). T(BPAdrt) î ID(x) =⇒ BPA+drt ` x = δ̇,

(iv). T(BPAdrt) î ¬ID(x) =⇒ BPA+drt ` x+ δ = x,

(v). T(BPAdrt) î x σ3 =⇒ BPA+drt ` x = νrel(x),

(vi). T(BPAdrt) î x σ→ y =⇒ BPA+drt ` x = σrel(y) + νrel(x),

(vii). T(BPAdrt) î x σ→ x =⇒ BPA+drt ` x = bxcω,

(viii). T(BPAdrt) î x a→ y =⇒ n(x) > n(y),

(ix). T(BPAdrt) î x σ→ y =⇒ x ≡ y ∨ n(x) > n(y).
Proof For part (i)–(vii) we assume, by Theorem 2.8.16 and Theorem 2.8.18, without
loss of generality, that x is a basic term, and then apply induction on the structure of basic
terms. For part (viii) and (ix) we again have to use induction on the general structure of
terms.

(i). Suppose that T(BPAdrt) î x a→√. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x a→√, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ.
Because T(BPAdrt) î x a→√, it must be the case that b ≡ a. So we have BPA+drt `
x = b = b + b = a + b = a + x. Case 3: x ≡ b, where b ∈ Aδ. Because
T(BPAdrt) î x a→√, it must be the case that b ≡ a. So we have BPA+drt ` x = b =
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bbcω= νrel(b)+σrel
(bbcω) = νrel(b)+νrel(b)+σrel

(bbcω) = b+bbcω= a+b = a+x.
Case 4: x ≡ b · x′, where b ∈ Aδ and x′ is a basic term. This is in contradiction
with T(BPAdrt) î x a→√, so this case does not occur. Case 5: x ≡ b · x′, where
b ∈ Aδ and x′ is a basic term. This is in contradiction with T(BPAdrt) î x a→√, so
this case does not occur. Case 6: x ≡ x′ + x′′, where x′ and x′′ are basic terms. As
T(BPAdrt) î x a→√, necessarily T(BPAdrt) î x′ a→

√
or T(BPAdrt) î x′′ a→

√
. There-

fore, by the induction hypothesis, BPA+drt ` x′ = a+ x′ or BPA+drt ` x′′ = a+ x′′. But
then in both cases BPA+drt ` x = x′ + x′′ = a + x′ + x′′ = a + x. Case 7: x ≡ σrel(x′),
where x′ is a basic term. This is in contradiction with T(BPAdrt) î x a→√, so this
case does not occur.

(ii). Suppose that T(BPAdrt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x a→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPAdrt) î x a→ y, so this case does not occur. Case 3:
x ≡ b, where b ∈ Aδ. This is in contradiction with T(BPAdrt) î x a→ y, so this case
does not occur. Case 4: x ≡ b · x′, where b ∈ Aδ and x′ is a basic term. Then,
because T(BPAdrt) î x a→ y, it must be that b ≡ a and x′ ≡ y. So, BPA+drt ` x =
x + x = b · x′ + x = a · y + x. Case 5: x ≡ b · x′, where b ∈ Aδ and x′ is a ba-
sic term. Then, because T(BPAdrt) î x a→ y, it must be that b ≡ a and x′ ≡ y. So,
BPA+drt ` x = b · x′ = a · y = (a + a) · y = a · y + a · y = a · y + x. Case 6:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPAdrt) î x a→ y, necessarily
T(BPAdrt) î x′ a→ y or T(BPAdrt) î x′′ a→ y. Therefore, by the induction hypothe-
sis, BPA+drt ` x′ = a · y + x′ or BPA+drt ` x′′ = a · y + x′′. But then in both cases
BPA+drt ` x = x′ + x′′ = a · y + x′ + x′′ = a · y + x. Case 7: x ≡ σrel(x′), where x′ is
a basic term. This is in contradiction with T(BPAdrt) î x a→ y, so this case does not
occur.

(iii). Suppose that T(BPAdrt) î ID(x). Case 1: x ≡ δ̇. Then BPA+drt ` x = δ̇ is trivially ful-
filled. Case 2: x ≡ a, where a ∈ Aδ. This is in contradiction with T(BPAdrt) î ID(x),
so this case does not occur. Case 3: x ≡ a, where a ∈ Aδ. This is in contradiction
with T(BPAdrt) î ID(x), so this case does not occur. Case 4: x ≡ a · x′, where
a ∈ Aδ and x′ is a basic term. This is in contradiction with T(BPAdrt) î ID(x),
so this case does not occur. Case 5: x ≡ a · x′, where a ∈ Aδ and x′ is a ba-
sic term. This is in contradiction with T(BPAdrt) î ID(x), so this case does not
occur. Case 6: x ≡ x′ + x′′, where x′ and x′′ are basic terms. Then, because
T(BPAdrt) î ID(x), it must be the case that T(BPAdrt) î ID(x′), ID(x′′). So, by
the induction hypothesis, we have that BPA+drt ` x′ = δ̇, x′′ = δ̇. But then also
BPA+drt ` x = x′ +x′′ = δ̇+ δ̇ = δ̇. Case 7: x ≡ σrel(x′), where x′ is a basic term. This
is in contradiction with T(BPAdrt) î ID(x), so this case does not occur.

(iv). Suppose that T(BPAdrt) î ¬ID(x). Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î ¬ID(x), so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ.
BPA+drt ` x + δ = a + δ = a = x. Case 3: x ≡ a, where a ∈ Aδ. Then we have
BPA+drt ` x+δ = a+δ = bacω+δ = νrel(a)+σrel

(bacω)+δ = a+δ+σrel
(bacω) =

a+σrel
(bacω) = νrel(a)+σrel

(bacω) = bacω= a = x. Case 4: x ≡ a·x′, wherea ∈ Aδ
and x′ is a basic term. BPA+drt ` x+δ = a·x′+δ = a·x′+δ·x′ = (a+δ)·x′ = a·x′ = x.
Case 5: x ≡ a ·x′, where a ∈ Aδ and x′ is a basic term. Then, using Case 3, BPA+drt `
x+δ = a·x′+δ = a·x′+δ·x′ = (a+δ) ·x′ = a·x′ = x. Case 6: x ≡ x′+x′′, where x′
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and x′′ are basic terms. As T(BPAdrt) î ¬ID(x), necessarily T(BPAdrt) î ¬ID(x′) or
T(BPAdrt) î ¬ID(x′′). Therefore, by the induction hypothesis, BPA+drt ` x′ + δ = x′
or BPA+drt ` x′′ +δ = x′′. So, in both cases, BPA+drt ` x+δ = x′ +x′′ +δ = x′ +x′′ = x.
Case 7: x ≡ σrel(x′), where x′ is a basic term. Then we have BPA+drt ` x + δ =
σrel(x′) + δ = σrel(x′) = x.

(v). Suppose that T(BPAdrt) î x σ3 . Case 1: x ≡ δ̇. By Axiom DCSID we have BPA+drt `
x = δ̇ = νrel(δ̇) = νrel(x). Case 2: x ≡ a, where a ∈ Aδ. We have BPA+drt ` x =
a = νrel(a) = νrel(x). Case 3: x ≡ a, where a ∈ Aδ. This is in contradiction with
T(BPAdrt) î x σ3 , so this case does not occur. Case 4: x ≡ a · x′, where a ∈ Aδ and
x′ is a basic term. We have BPA+drt ` x = a · x′ = νrel(a) · x′ = νrel(a · x′) = νrel(x).
Case 5: x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. This is in contradiction
with T(BPAdrt) î x σ3 , so this case does not occur. Case 6: x ≡ x′ + x′′, where x′
and x′′ are basic terms. As T(BPAdrt) î x σ3 , necessarily T(BPAdrt) î x′ σ3 and
T(BPAdrt) î x′′ σ3 . Therefore, by the induction hypothesis, BPAdrt ` x′ = νrel(x′)
and BPA+drt ` x′′ = νrel(x′′). But then also BPA+drt ` x = x′+x′′ = νrel(x′)+νrel(x′′) =
νrel(x′ + x′′) = νrel(x). Case 7: x ≡ σrel(x′), where x′ is a basic term. Then, by
T(BPAdrt) î x σ3 , it must be the case that ID(x′). So, by (iii), we have that BPA+drt `
x′ = δ̇. Therefore, BPA+drt ` x = σrel(x′) = σrel(δ̇) = δ = νrel(σrel(x′)) = νrel(x).

(vi). Suppose that T(BPAdrt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This
is in contradiction with T(BPAdrt) î x σ→ y, so this case does not occur. Case 3:
x ≡ a, where a ∈ Aδ. Because T(BPAdrt) î x σ→ y, it must be the case that y ≡ a.
So we have BPA+drt ` x = a = bacω = νrel(a) + σrel

(bacω) = σrel(a) + νrel(a) +
δ = σrel(a) + νrel(a) + νrel

(
σrel

(bacω)) = σrel(a) + νrel
(
νrel(a) +σrel

(bacω)) =
σrel(a)+νrel

(bacω) = σrel(a)+νrel(a) = σrel(y)+νrel(x). Case 4: x ≡ a ·x′, where
a ∈ Aδ and x′ is a basic term. This is in contradiction with T(BPAdrt) î x σ→ y, so
this case does not occur. Case 5: x ≡ a · x′, where a ∈ Aδ and x′ is a basic term.
Because T(BPAdrt) î x σ→ y, it must be the case that y ≡ a · x′. So we have BPA+drt `
x = a · x′ = bacω· x′ = (νrel(a) + σrel

(bacω)) · x′ = νrel(a) · x′ + σrel
(bacω) · x′ =

σrel
(bacω)·x′+νrel(a)·x′+δ = σrel(a·x′)+νrel(a)·x′+δ·x′ = σrel(y)+(νrel(a)+δ)·

x′ = σrel(y)+
(
νrel(a) + νrel

(
σrel

(bacω)))·x′ = σrel(y)+νrel
(
a+ σrel

(bacω))·x′ =
σrel(y)+νrel

(
νrel(a) + σrel

(bacω))·x′ = σrel(y)+νrel
(bacω)·x′ = σrel(y)+νrel(a)·

x′ = σrel(y) + νrel(a · x′) = σrel(y) + νrel(x). Case 6: x ≡ x′ + x′′, where x′ and x′′
are basic terms. As T(BPAdrt) î x σ→ y, necessarily (1) T(BPAdrt) î x′ σ→ y, x′′ σ3 ,
or, (2) T(BPAdrt) î x′ σ3 , x′′ σ→ y, or, (3) T(BPAdrt) î x′ σ→ y′, x′′ σ→ y′′ where y ≡
y′ + y′′. In the first case, by the induction hypothesis, we have BPA+drt ` x′ =
σrel(y) + νrel(x′), and, by (v), BPA+drt ` x′′ = νrel(x′′). Therefore, BPA+drt ` x =
x′ + x′′ = σrel(y) + νrel(x′) + νrel(x′′) = σrel(y) + νrel(x′ + x′′) = σrel(y) + νrel(x).
The second case is treated analogously. In the third case we have, by the induc-
tion hypothesis, BPAdrt ` x′ = σrel(y′) + νrel(x′), x′′ = σrel(y′′) + νrel(x′′). There-
fore we have BPA+drt ` x = x′ + x′′ = σrel(y′) + νrel(x′) + σrel(y′′) + νrel(x′′) =
σrel(y′ + y′′) + νrel(x′ + x′′) = σrel(y) + νrel(x). Case 7: x ≡ σrel(x′), where x′ is
a basic term. Because T(BPAdrt) î x σ→ y, it must be the case that x′ ≡ y. So we
have BPA+drt ` x = σrel(x′) = σrel(y) = σrel(y) + δ = σrel(y) + νrel(σrel(x′)) =
σrel(y) + νrel(x).
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(vii). Suppose that T(BPAdrt) î x σ→ x. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ x, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ.
This is in contradiction with T(BPAdrt) î x σ→ x, so this case does not occur. Case 3:
x ≡ a, where a ∈ Aδ. Then we have, using Proposition 2.8.11(i), BPA+drt ` x = a =
bacω= bxcω. Case 4: x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. This is in con-
tradiction with T(BPAdrt) î x σ→ x, so this case does not occur. Case 5: x ≡ a · x′,
where a ∈ Aδ and x′ is a basic term. Then we can derive, using Proposition 2.8.11(i)
and (ii), BPA+drt ` x = a · x′ = bacω · x′ = ba · x′cω = bxcω. Case 6: x ≡ x′ + x′′,
where x′ and x′′ are basic terms. Then we can derive, using Proposition 2.8.11(iii)
and the induction hypothesis, BPA+drt ` x = x′ + x′′ = bxcω+ bx′cω= bx′ + x′′cω=
bxcω. Case 7: x ≡ σrel(x′), where x′ is a basic term. This is in contradiction with
T(BPAdrt) î x σ→ x, so this case does not occur.

(viii). Suppose that T(BPAdrt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPAdrt) î x a→ y, so this case does not occur. Case 3:
x ≡ b, where b ∈ Aδ. This is in contradiction with T(BPAdrt) î x a→ y, so this
case does not occur. Case 4: x ≡ x′ · x′′, for certain terms x′ and x′′. Then, be-
cause T(BPAdrt) î x a→ y, we either have T(BPAdrt) î x′ a→

√
and y ≡ x′′, or we

have T(BPAdrt) î x′ a→ x′′′ and y ≡ x′′′ · x′′ for some term x′′′. In the first case,
we have n(x) = n(x′ · x′′) = n(x′) + n(x′′) + 1 > n(x′′) = n(y), and in the sec-
ond we can apply the induction hypothesis to arrive at n(x′) > n(x′′′), so we get
n(x) = n(x′ · x′′) = n(x′) + n(x′′) + 1 > n(x′′′) + n(x′) + 1 = n(x′′′ · x′′) = n(y).
Case 5: x ≡ x′+x′′, for certain terms x′ and x′′. Since T(BPAdrt) î x a→ y, necessarily
T(BPAdrt) î x′ a→ y or T(BPAdrt) î x′′ a→ y. Therefore, by the induction hypothesis,
n(x′) > n(y) or n(x′′) > n(y). In both cases n(x) = n(x′+x′′) = n(x′)+n(x′′)+1 >
n(y). Case 6: x ≡ σrel(x′), for a certain term x′. This is in contradiction with
T(BPAdrt) î x a→ y, so this case does not occur. Case 7: x ≡ νrel(x′), for a certain
term x′. Since T(BPAdrt) î x a→ y, necessarily T(BPAdrt) î x′ a→ y. Therefore, by the
induction hypothesis, n(x′) > n(y). So, n(x) = n(νrel(x′)) = n(x′) + 1 > n(y).
Case 8: x ≡ bx′cω, for a certain term x′. Since T(BPAdrt) î x a→ y, necessarily
T(BPAdrt) î x′ a→ y. Therefore, by the induction hypothesis, n(x′) > n(y). So,
n(x) = n(bx′cω) = n(x′) + 1 > n(y).

(ix). Suppose that T(BPAdrt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This is
in contradiction with T(BPAdrt) î x σ→ y, so this case does not occur. Case 3: x ≡ a,
where a ∈ Aδ. Because T(BPAdrt) î x σ→ y, it must be the case that x ≡ y, and we
are done. Case 4: x ≡ x′ ·x′′, for certain terms x′ and x′′. Then necessarily, x′ σ→ x′′′
and y ≡ x′′′ · x′′ for some term x′′′. We now can apply the induction hypothesis
to arrive at n(x′) > n(x′′′), so we get n(x) = n(x′ · x′′) = n(x′) + n(x′′) + 1 >
n(x′′′) + n(x′′) + 1 = n(x′′′ · x′′) = n(y). Case 5: x ≡ x′ + x′′, for certain terms
x′ and x′′. As T(BPAdrt) î x σ→ y, necessarily (1) T(BPAdrt) î x′ σ→ y, x′′ σ3 , or, (2)
T(BPAdrt) î x′ σ3 , x′′ σ→ y, or, (3) T(BPAdrt) î x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′ + y′′. In
the first case, by the induction hypothesis, n(x′) > n(y). So n(x) = n(x′ + x′′) =
n(x′) + n(x′′) + 1 > n(y). The second case is treated analogously. In the third
case, by the induction hypothesis, n(x′) > n(y′) and n(x′′) > n(y′′). So n(x) =
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n(x′ +x′′) = n(x′)+n(x′′)+1 > n(y′)+n(y′′)+1 = n(y). Case 6: x ≡ σrel(x′), for
a certain term x′. Because T(BPAdrt) î x σ→ y, it must be the case that x′ ≡ y. Then
we have n(x) = n(σrel(x′)) = n(x′)+1 = n(y)+1 > n(y). Case 7: x ≡ νrel(x′), for
a certain term x′. This is in contradiction with T(BPAdrt) î x σ→ y, so this case does
not occur. Case 8: x ≡ bx′cω, for a certain term x′. Because T(BPAdrt) î x σ→ y, it
must be the case that x ≡ y, and we are done.

�

Remark 2.8.21 (Towards Completeness of BPA+drt)
Note that Lemma 2.8.14 on page 59 now also follows as a corollary from Lemma 2.8.20(iii)
and (iv) by the law of the excluded middle.

Theorem 2.8.22 (Completeness of BPA+drt)
The axiom system BPA+drt is a complete axiomatization of the set of closed BPAdrt terms
modulo bisimulation equivalence.

Proof Suppose that s + t ∼BPAdrt
t. We will prove that BPA+drt ` s + t = t. By Theorem

2.8.16 we can restrict ourselves to basic terms s and t. The proof is done with induction
on n(s), using Lemma 2.8.20(viii)–(ix) and case distinction on the form of basic term s.

(i). s ≡ δ̇. Using Axiom A6ID we have BPA+drt ` s + t = δ̇+ t = t + δ̇ = t.

(ii). s ≡ δ. Then, since for u ∈ Aσ we have T(BPAdrt) î s u3 , also T(BPAdrt) î s + t u→ p
iff T(BPAdrt) î t u→ p, and for a ∈ A, T(BPAdrt) î s + t a→

√
iff T(BPAdrt) î t a→

√
.

Furthermore, we have ¬ID(s+ t), since T(BPAdrt) î ¬ID(s). Since s+ t ∼BPAdrt
t, we

also have T(BPAdrt) î ¬ID(t). Using Lemma 2.8.20(iv) we have BPA+drt ` s + t =
δ+ t = t + δ = t.

(iii). s ≡ a, where a ∈ A. From the deduction rules we have T(BPAdrt) î s a→
√

and
T(BPAdrt) î s+t a→

√
. Since s+t ∼BPAdrt

t we also have T(BPAdrt) î t a→
√

. By Lemma
2.8.20(i) we obtain BPA+drt ` t = a+ t. So, BPA+drt ` s + t = a+ t = t.

(iv). s ≡ δ. Then δ σ→ δ. Therefore s+t σ→ s+t′ and t σ→ t′ with s+t′ ∼BPAdrt
t′. With Lemma

2.8.20(vi) we have BPA+drt ` t = σrel(t′) + νrel(t). Two cases need to be considered:

(a) t ≡ t′. Now, s + t σ→ s + t and t σ→ t, so by Lemma 2.8.20(vii) we have BPA+drt `
s + t = bs + tcω and BPA+drt ` t = btcω. So we can derive, using Proposition
2.8.11(i) and (iii) and Lemma 2.8.20(iv): BPA+drt ` s+t = bs + tcω= bscω+btcω=
bδcω+ btcω= δ+ btcω= bδcω+ btcω= bδ+ tcω= btcω= t.

(b) t � t′. Now, by Lemma 2.8.20(ix), n(t′) < n(t). Therefore, the induction
hypothesis is applicable: BPA+drt ` δ + t′ = t′. Consider the following com-
putation: BPA+drt ` s + t = δ + t = bδcω+ t = νrel(δ) + σrel

(bδcω) + t =
δ+σrel(δ)+t = σrel(δ)+t = σrel(δ)+σrel(t′)+νrel(t) = σrel(δ+t′)+νrel(t) =
σrel(t′) + νrel(t) = t.

(v). s ≡ a, where a ∈ A. Then s a→√. Therefore s + t a→√ and, since s + t ∼BPAdrt
t, t a→√.

Using Lemma 2.8.20(i) we obtain BPA+drt ` t = a + t. We also have s σ→ s. Therefore
s + t σ→ s + t′ and t σ→ t′. From Lemma 2.8.20(vi) we obtain: BPA+drt ` t = σrel(t′) +
νrel(t). Two cases can be distinguished:
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(a) t ≡ t′. Now, s + t σ→ s + t and t σ→ t, so by Lemma 2.8.20(vii) we have BPA+drt `
s + t = bs + tcω and BPA+drt ` t = btcω. So we can derive, using Proposition
2.8.11(i) and (iii): BPA+drt ` s + t = bs + tcω = bscω+ btcω = bacω+ btcω =
a+ btcω= bacω+ btcω= ba+ tcω= btcω= t.

(b) t � t′. Now, by Lemma 2.8.20(ix), n(t′) < n(t). Therefore the induction hy-
pothesis is applicable: BPA+drt ` a + t′ = t′. Consider the following compu-
tation: BPA+drt ` s + t = a + t = bacω + t = νrel(a) + σrel

(bacω) + t =
a+σrel(a)+t = σrel(a)+t = σrel(a)+σrel(t′)+νrel(t) = σrel(a+t′)+νrel(t) =
σrel(t′) + νrel(t) = t.

(vi). s ≡ δ · s′, where s′ is a basic term. Then we have BPA+drt ` s = δ · s′ = δ and, using
(ii), BPA+drt ` s + t = t.

(vii). s ≡ a · s′, where a ∈ A and s′ is a basic term. From the deduction rules we obtain
T(BPAdrt) î s a→ s′ and T(BPAdrt) î s+ t a→ s′. Since s+ t ∼BPAdrt

t, we then also have
T(BPAdrt) î t a→ t′ for some t′ such that s′ ∼BPAdrt

t′. By the induction hypothesis we
have BPA+drt ` s′ = t′. From Lemma 2.8.20(ii) we have BPA+drt ` t = a · t′ + t. So,
BPA+drt ` s + t = a · s′ + t = a · t′ + t = t.

(viii). s ≡ δ · s′, where s′ is a basic term. Then we have, using Proposition 2.8.12, BPA+drt `
s = δ · s′ = δ and, using (iv), BPA+drt ` s + t = t.

(ix). s ≡ a · s′, where a ∈ A and s′ is a basic term. Then s a→ s′ and s + t a→ s′. Since
s + t ∼BPAdrt

t we also have t a→ t′ for some t′ such that s′ ∼BPAdrt
t′. By induction we

therefore have BPA+drt ` s′ = t′. We also have s σ→ s and s+ t σ→ s+ t′′ and t σ→ t′′. By
Lemma 2.8.20(ii) we have BPA+drt ` t = a · t′ + t and BPA+drt ` t = σrel(t′′) + νrel(t).
Two cases can be distinguished:

(a) t ≡ t′′. Now, s + t σ→ s + t and t σ→ t, so by Lemma 2.8.20(vii) we have BPA+drt `
s + t = bs + tcω and BPA+drt ` t = btcω. So we can derive, using Proposition
2.8.11(i)–(iii): BPA+drt ` s + t = bs + tcω = bscω+ btcω = ba · s′cω+ btcω =
bacω·s′+btcω= a·s′+btcω= bacω·s′+btcω= ba · s′cω+btcω= ba · s′ + tcω=
ba · t′ + tcω= btcω= t.

(b) t � t′′. Now, by Lemma 2.8.20(ix), n(t′′) < n(t). By the induction hypothe-
sis we then have BPA+drt ` s + t′′ = t′′. Consider the following computation:
BPA+drt ` s+ t = a · s′ + t = bacω· s′ + t =

(
νrel(a) + σrel

(bacω)) · s′ + t = (a+
σrel(a))·s′+t = a·t′+σrel(a)·s′+t = σrel(a)·s′+t = σrel(a·s′)+t = σrel(s)+
t = σrel(s) + σrel(t′′) + νrel(t) = σrel(s + t′′) + νrel(t) = σrel(t′′) + νrel(t) = t.

(x). s ≡ s′ + s′′, where s′ and s′′ are basic terms. Since s′ + s′′ + t ∼BPAdrt
t, we also have

s′ + t ∼BPAdrt
t and s′′ + t ∼BPAdrt

t. By the induction hypothesis we then have BPA+drt `
s′ + t = t, s′′ + t = t. So, BPA+drt ` s + t = s′ + s′′ + t = s′ + t = t.

(xi). s ≡ σrel(s′), where s′ is a basic term. From the deduction rules we have T(BPAdrt) î
σrel(s′)

σ→ s′ and since s + t ∼BPAdrt
t we also have T(BPAdrt) î t σ→ t′, s + t σ→ s′ + t′

for some t′ such that s′ + t′ ∼BPAdrt
t′. By Lemma 2.8.20(vi) we have BPA+drt ` t =

σrel(t′) + νrel(t). By the induction hypothesis we have BPA+drt ` s′ + t′ = t′. So,
BPA+drt ` s + t = σrel(s′) + t = σrel(s′) + σrel(t′) + νrel(t) = σrel(s′ + t′) + νrel(t) =
σrel(t′) + νrel(t) = t.
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Remark 2.8.23 (Completeness of BPAdrt)
Completeness of a somewhat different version of BPAdrt is also claimed (without proof)
in Section 3.5 of [10].

Definition 2.8.24 (Axiom for the Ultimate Start Delay and Immediate Deadlock)
We define Axiom USD5 for the ultimate start delay of immediate deadlock as shown in
Table 23. Note that it precisely corresponds to the equality of Proposition 2.8.11(v).

bδ̇cω= δ USD5

Table 23: Axiom for bδ̇cω.

Corollary 2.8.25 (Soundness of BPAdrt + USD1–USD5)
The set of closed BPAdrt terms modulo bisimulation equivalence is a model of BPAdrt +
USD1–USD5.

Proof This follows directly from the soundness of BPA+drt (see Theorem 2.8.18 on
page 62) combined with the fact that Axioms USD1–USD5 are derivable in BPA+drt (see
Proposition 2.8.11 on page 55). �

Corollary 2.8.26 (Completeness of BPAdrt + USD1–USD5)
If we add Axioms USD1–USD4 of Table 18 on page 45 and Axiom USD5 of Table 23 to
BPAdrt, we again have a complete axiomatization of the set of closed BPAdrt terms modulo
bisimulation equivalence.

Proof Careful inspection of the dependencies between the proofs in this section re-
veals that the proof of Theorem 2.8.22 only relies upon RSP(USD) to ensure Proposition
2.8.11(i)–(v). So, we obviously do not need RSP(USD) anymore if we add the correspond-
ing Axioms USD1–USD5. Note that in this way we get a purely equational axiomatization
(i.e. without conditional axioms or principles). �
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3 Concurrent Process Algebras

3.1 Introduction

In this section we prove soundness and completeness for some discrete-time concurrent
process algebras, i.e. process algebras containing a merge operator. We will not explore
the field of concurrent process algebras as thoroughly as we did for basic process alge-
bra. However, we feel that we have shown which paths to take in proving soundness and
completeness for concurrent process algebras.

The first algebra we examine is PA−drt–ID, which is basically BPA−drt–ID with a (free)
merge operator added. We also look at PA−drt–ID′ which intuitively very similar to PA−drt–ID,
but only defined in a slightly different way. We then proceed by replacing the (free) merge
operator with a merge operator capable of communication; this yields ACP−drt–ID. We
again examine a slightly different version: ACP−drt–ID′.

Finally, we take a look at PAdrt and ACPdrt. These theories also contain the ultimate
start delay and the immediate deadlock. As ACPdrt combines all features described here
in one theory, the completeness result for ACPdrt is in a sense “the mother of all com-
pleteness results” when it comes to discrete-time process algebra’s.

3.2 Soundness and Completeness of PA−drt–ID

Definition 3.2.1 (Signature of PA−drt–ID)
The signature of PA−drt–ID consists of the undelayable atomic actions {a|a ∈ A}, the unde-
layable deadlock constant δ, the alternative composition operator +, the sequential com-
position operator ·, the time unit delay operator σrel, the “now” operator νrel, the (free)
merge operator ‖, and the left merge operator ‖ .

Definition 3.2.2 (Axioms of PA−drt–ID)
The process algebra PA−drt–ID is axiomatized by the axioms of BPA−drt–ID given in Defini-
tion 2.5.2 on page 22, Axioms DRTM1–DRTM4 shown in Table 24, and Axioms DRTM5–
DRTM6 shown in Table 25 on the following page: PA−drt–ID = A1–A5 + DRT1–DRT5 +
DCS1–DCS4 + DRTM1–DRTM6.

x ‖ y = x ‖ y + y ‖ x DRTM1

a ‖ x = a · x DRTM2

a · x ‖ y = a · (x ‖ y) DRTM3

(x+ y) ‖ z = x ‖ z+ y ‖ z DRTM4

Table 24: Axioms for the (free) merge.

Definition 3.2.3 (Semantics of PA−drt–ID)
The semantics of PA−drt–ID are given by the term deduction system T(PA−drt–ID) induced
by the deduction rules for BPA−drt–ID given in Definition 2.5.4 on page 23 and the deduc-
tion rules for the (free) merge given in Table 26 on the following page.
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σrel(x) ‖ νrel(y) = δ DRTM5

σrel(x) ‖ (νrel(y) + σrel(z)) = σrel(x ‖ z) DRTM6

Table 25: Additional axioms for PA−drt–ID.

x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′
x ‖ y a→ x ‖ y′

x a→ x′
x ‖ y a→ x′ ‖ y

x a→√

x ‖ y a→ y
y a→√

x ‖ y a→ x
x a→√

x ‖ y a→ y
x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

Table 26: Deduction rules for the (free) merge.

Definition 3.2.4 (Bisimulation and Bisimulation Model for PA−drt–ID)
Bisimulation for PA−drt–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “PA−drt–ID” in Def-
inition 2.4.5 on page 14 and “BPA” by “PA−drt–ID” in Definition 2.2.11 on page 8.

Definition 3.2.5 (Basic Terms of PA−drt–ID)
If we speak of basic terms in the context of PA−drt–ID, we mean (σ,δ)-basic terms as de-
fined in Definition 2.5.6 on page 23.

Definition 3.2.6 (Number of Symbols of a PA−drt–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed PA−drt–ID terms x and y, we define n(x + y) = n(x · y) = n(x ‖ y) =
n(x ‖ y) = n(x) + n(y) + 1,

(iii). for a closed PA−drt–ID term x, we define n(σrel(x)) = n(νrel(x)) = n(x) + 1.

Remark 3.2.7 (Proving Elimination using the Direct Method)
In some settings the term rewriting analysis method for proving elimination mentioned
in Remark 2.4.10 on page 15 does not work, as the term rewriting system we arrive at
is not strongly terminating. In these cases, we apply a direct method: we simply prove
that for all closed terms elimination can be achieved by examining all possible cases. Al-
though conceptually simple, this method often gives rise to very lengthy proofs, expo-
nentially so for theories that contain many features. See Theorem 3.2.8 on the next page
for an example of this method.
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Theorem 3.2.8 (Elimination for PA−drt–ID)
Let t be a closed PA−drt–ID term. Then there is a closed BPA−drt–ID term s such that PA−drt–ID `
s = t.
Proof Let t be a closed PA−drt–ID term. The theorem is proven by induction on n(t)
and case distinction on the general structure of t.

(i). t ≡ a for some a ∈ Aδ. Then t is a closed BPA−drt–ID term.

(ii). t ≡ t1+t2 for closed PA−drt–ID terms t1 and t2. By induction there are closed BPA−drt–ID
terms s1 and s2 such that PA−drt–ID ` t1 = s1 and PA−drt–ID ` t2 = s2. But then also
PA−drt–ID ` t1 + t2 = s1 + s2 and s1 + s2 is a closed BPA−drt–ID term.

(iii). t ≡ t1 · t2 for closed PA−drt–ID terms t1 and t2. This case is treated analogously to
case (ii).

(iv). t ≡ σrel(t1) for a closed PA−drt–ID term t1. This case is treated analogously to case
(ii).

(v). t ≡ νrel(t1) for a closed PA−drt–ID term t1. This case is treated analogously to case
(ii).

(vi). t ≡ t1 ‖ t2 for closed PA−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that PA−drt–ID ` t1 = s1 and PA−drt–ID ` t2 = s2.
By Theorem 2.5.12, the elimination theorem for BPA−drt–ID, there are basic terms
r1 and r2 such that BPA−drt–ID ` s1 = r1 and BPA−drt–ID ` s2 = r2. But then also,
PA−drt–ID ` t1 = r1, PA−drt–ID ` t2 = r2, and PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2. We prove
this case by induction on the structure of basic term r1:

(a) r1 ≡ a for some a ∈ Aδ. Then PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = a ‖ r2 = a · r2,
and a · r2 is a closed BPA−drt–ID term.

(b) r1 ≡ a · r ′1 for some a ∈ Aδ and basic term r ′1. Then PA−drt–ID ` t1 ‖ t2 =
r1 ‖ r2 = a · r ′1 ‖ r2 = a · (r ′1 ‖ r2). By the induction hypothesis there exists
a closed BPA−drt–ID term p such that PA−drt–ID ` r ′1 ‖ r2 = p. Then, PA−drt–ID `
t1 ‖ t2 = a · (r ′1 ‖ r2) = a · p, and a · p is a closed BPA−drt–ID term.

(c) r1 ≡ r ′1 + r ′′1 for basic terms r ′1 and r ′′1 . Then PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 =
(r ′1 + r ′′1 ) ‖ r2 = r ′1 ‖ r2 + r ′′1 ‖ r2. By induction there exist closed BPA−drt–ID
terms p1 and p2 such that PA−drt–ID ` r ′1 ‖ r2 = p1 and PA−drt–ID ` r ′′1 ‖ r2 = p2.
Then also PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = r ′1 ‖ r2+r ′′1 ‖ r2 = p1+p2, and p1+p2

is a closed BPA−drt–ID term.

(d) r1 ≡ σrel(r ′1) for a basic term r ′1. By Lemma 2.5.10 there is a basic term r ′2 such
that either PA−drt–ID ` r2 = νrel(r2) or PA−drt–ID ` r2 = νrel(r2) + σrel(r ′2) with
n(r ′2) < n(r2). With case analysis we obtain:

i. r2 = νrel(r2). Then PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ r2 =
σrel(r ′1) ‖ νrel(r2) = δ, and δ is a closed BPA−drt–ID term.

ii. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2. Then PA−drt–ID ` t1 ‖ t2 =
r1 ‖ r2 = σrel(r ′1) ‖ r2 = σrel(r ′1) ‖ (νrel(r2) + σrel(r ′2)) = σrel(r ′1 ‖ r ′2).
By the induction hypothesis there is a closed BPA−drt–ID term p such that
PA−drt–ID ` r ′1 ‖ r ′2 = p. But then also PA−drt–ID ` t1 ‖ t2 = σrel(r ′1 ‖ r ′2) =
σrel(p), and σrel(p) is a closed BPA−drt–ID term.
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(vii). t ≡ t1 ‖ t2 for closed PA−drt–ID terms t1 and t2. Then PA−drt–ID ` t1 ‖ t2 =
t1 ‖ t2 + t2 ‖ t1. By (vi) there are closed BPA−drt–ID terms p1 and p2 such that
PA−drt–ID ` t1 ‖ t2 = p1 and PA−drt–ID ` t2 ‖ t1 = p2. But then also PA−drt–ID `
t1 ‖ t2 = t1 ‖ t2 + t2 ‖ t1 = p1 + p2, and p1 + p2 is a closed BPA−drt–ID term.

�

Corollary 3.2.9 (Elimination for PA−drt–ID)
Let t be a closed PA−drt–ID term. Then there is a basic term s such that PA−drt–ID ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for PA−drt–ID (see Theorem 3.2.8),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 2.5.12),

(iii). the fact that all axioms of BPA−drt–ID are also contained in PA−drt–ID.

�

Remark 3.2.10 (Elimination for PA−drt–ID)
Elimination for PA−drt–ID is also claimed (without proof) in Theorem 3.2 of [11].

Theorem 3.2.11 (Soundness of PA−drt–ID)
The set of closed PA−drt–ID terms modulo bisimulation equivalence is a model of PA−drt–ID.

Proof Soundness is proven following the same lines as in the previous soundness
theorems.

Axiom DRTM1 Take the relation:

R = {(s, s), (s ‖ t, t ‖ s), (s ‖ t, s ‖ t + t ‖ s)∣∣s, t ∈ C(PA−drt–ID)
}

First we look at the transitions of the left-hand side:

(i). Suppose that s ‖ t a→ p. First we look at the (s ‖ t, t ‖ s) pairs. By inspection
of the deduction rules we can conclude that either s a→ p1 and p ≡ p1 ‖ t, or
t a→ p2 and p ≡ s ‖ p2, or s a→√ and p ≡ t, or t a→√ and p ≡ s. Therefore, either
t ‖ s a→ t ‖ p1, or t ‖ s a→ p2 ‖ s, or t ‖ s a→ t, or t ‖ s a→ s respectively, and note
that (p1 ‖ t, t ‖ p1) ∈ R, (s ‖ p2, p2 ‖ s) ∈ R, (t, t) ∈ R, and (s, s) ∈ R.
Continuing with the (s ‖ t, s ‖ t+ t ‖ s) pairs, we also have either s ‖ t a→ p1 ‖
t, or t ‖ s a→ p2 ‖ s, or s ‖ t a→ t, or t ‖ s a→ s. Therefore, either s ‖ t +
t ‖ s a→ p1 ‖ t, or s ‖ t + t ‖ s a→ p2 ‖ s, or s ‖ t + t ‖ s a→ t, or s ‖ t + t ‖ s a→ s
respectively, and again note that (p1 ‖ t, p1 ‖ t) ∈ R, (s ‖ p2, p2 ‖ s) ∈ R,
(t, t) ∈ R, and (s, s) ∈ R.

(ii). Suppose that s ‖ t a→√. This case cannot occur.

(iii). Suppose that s ‖ t σ→ p. First we look at the (s ‖ t, t ‖ s) pairs. By inspection
of the deduction rules we can conclude that s σ→ p1, t σ→ p2, and p ≡ p1 ‖ p2.
Therefore, t ‖ s σ→ p2 ‖ p1, and note that (p1 ‖ p2, p2 ‖ p1) ∈ R.
Continuing with the (s ‖ t, s ‖ t + t ‖ s) pairs, we also have s ‖ t σ→ p1 ‖ p2

and t ‖ s σ→ p2 ‖ p1. Therefore, s ‖ t + t ‖ s σ→ p1 ‖ p2 + p2 ‖ p1, and note
that (p1 ‖ p2, p1 ‖ p2 + p2 ‖ p1) ∈ R.
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Secondly, we look at the transitions of the right-hand side:

(i). Suppose that t ‖ s a→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(ii). Suppose that t ‖ s a→√. This case cannot occur.

(iii). Suppose that t ‖ s σ→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(iv). Suppose that s ‖ t + t ‖ s a→ p. By inspection of the deduction rules we can
conclude that either s a→ p1 and p ≡ p1 ‖ t, or t a→ p2 and p ≡ p2 ‖ s, or s a→√
and p ≡ t, or t a→√ and p ≡ s. Therefore, either s ‖ t a→ p1 ‖ t, or s ‖ t a→ s ‖ p2,
or s ‖ t a→ t, or s ‖ t a→ s respectively, and note that (p1 ‖ t, p1 ‖ t) ∈ R, (s ‖
p2, p2 ‖ s) ∈ R, (t, t) ∈ R, and (s, s) ∈ R.

(v). Suppose that s ‖ t + t ‖ s a→ p. This case cannot occur.

(vi). Suppose that s ‖ t + t ‖ s σ→ p. By inspection of the deduction rules we can
conclude that s σ→ p1, t σ→ p2, and p ≡ p1 ‖ p2 + p2 ‖ p1. Since both s and t
can perform a σ transition, we obtain s ‖ t σ→ p1 ‖ p2, and note that (p1 ‖
p2, p1 ‖ p2 + p2 ‖ p1) ∈ R.

Axiom DRTM2 Take the relation:

R = {(s, s), (a ‖ s, a · s)∣∣s ∈ C(PA−drt–ID)
}

We look at the transitions of both sides at the same time. The only possible transi-
tion of the left-hand side is a ‖ s a→ s, the only possible transition of the right-hand
side is a · s a→ s, and note that (s, s) ∈ R.

Axiom DRTM3 Take the relation:

R = {(s, s), (a · s ‖ t, a · (s ‖ t))∣∣s ∈ C(PA−drt–ID)
}

We look at the transitions of both sides at the same time. The only possible tran-
sition of the left-hand side is a · s ‖ t a→ s ‖ t, the only possible transition of the
right-hand side is a · (s ‖ t) a→ s ‖ t, and note that (s ‖ t, s ‖ t) ∈ R.

Axiom DRTM4 Take the relation:

R = {(s, s), ((s + t) ‖ u, s ‖ u + t ‖ u)∣∣s, t, u ∈ C(PA−drt–ID)
}

First we look at the transitions of the left-hand side:

(i). Suppose (s+t) ‖ u a→ p. By inspection of the deduction rules we can conclude
that either s a→ p1 and p ≡ p1 ‖ u, or t a→ p2 and p ≡ p2 ‖ u, or s a→√ and
p ≡ u, or t a→√ and p ≡ u. So, either s ‖ u a→ p1 ‖ u, or t ‖ u a→ p2 ‖ u, or
s ‖ u a→ u, or t ‖ u a→ u. respectively. Therefore, either s ‖ u+ t ‖ u a→ p1 ‖ u,
or s ‖ u+t ‖ u a→ p2 ‖ u, or s ‖ u+t ‖ u a→ u, or s ‖ u+t ‖ u a→ u respectively,
and note that (p1 ‖ u,p1 ‖ u) ∈ R, (p2 ‖ u,p2 ‖ u) ∈ R, (u,u) ∈ R, and
(u, u) ∈ R.

(ii). Suppose (s + t) ‖ u a→√. This case cannot occur.
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(iii). Suppose (s + t) ‖ u σ→ p. Then s + t σ→ p1, u σ→ p2, and p ≡ p1 ‖ p2. Then one
of the following situations has occurred:

(a) s σ→ p1 and t σ3 : then s ‖ u σ→ p1 ‖ p2 and t ‖ u σ
3 . Therefore, s ‖ u +

t ‖ u σ→ p1 ‖ p2, and note that (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) s σ3 and t σ→ p1: this case is handled in the same way as the previous one.

(c) s σ→ q1, t σ→ q2, and p1 ≡ q1+q2: then s ‖ u σ→ q1 ‖ p2 and t ‖ u σ→ q2 ‖ p2.
Therefore s ‖ u+t ‖ u σ→ q1 ‖ p2+q2 ‖ p2, and note that ((q1+q2) ‖ p2,
q1 ‖ p2 + q2 ‖ p2) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose s ‖ u + t ‖ u a→ p. By inspection of the deduction rules we can con-
clude that either s a→ p1 and p ≡ p1 ‖ u, or t a→ p2 and p ≡ p2 ‖ u, or s a→√
and p ≡ u, or t a→√ and p ≡ u. Therefore, either (s + t) ‖ u a→ p1 ‖ u, or
(s + t) ‖ u a→ p2 ‖ u, or (s + t) ‖ u a→ u, or (s + t) ‖ u a→ u, and note that
(p1 ‖ u,p1 ‖ u) ∈ R, (p2 ‖ u,p2 ‖ u) ∈ R, (u, u) ∈ R, and (u, u) ∈ R.

(ii). Suppose s ‖ u + t ‖ u a→√. This case cannot occur.

(iii). Suppose s ‖ u + t ‖ u σ→ p. Then this must be due to one of the following:

(a) s ‖ u σ→ p and t ‖ u σ
3 : then s σ→ q1, u σ→ q2, and p ≡ q1 ‖ q2. Therefore,

s+ t σ→ q1 and (s+ t) ‖ u σ→ q1 ‖ q2, and note that (q1 ‖ q2, q1 ‖ q2) ∈ R.

(b) s ‖ u σ
3 and t ‖ u σ→ p: this case is handled in the same way as the previ-

ous one.

(c) s ‖ u σ→ p1, t ‖ u σ→ p2, and p ≡ p1 + p2: then s σ→ q1, t σ→ q2, u σ→ q3, p1 ≡
q1 ‖ q3, and p2 ≡ q2 ‖ q3. Therefore, s+t σ→ q1+q2 and (s+t) ‖ u σ→ (q1+
q2) ‖ q3, and note that ((q1 + q2) ‖ q3, q1 ‖ q3 + q2 ‖ q3) ∈ R.

Axiom DRTM5 Take the relation:

R = {(σrel(s) ‖ νrel(t),δ)
∣∣s, t ∈ C(PA−drt–ID)

}
We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: σrel(s) ‖ νrel(t)3 . Also for the right-
hand side there are no transitions possible: δ3 .

Axiom DRTM6 Take the relation:

R = {(s, s), (σrel(s) ‖ (νrel(t) + σrel(u)),σrel(s ‖ u))
∣∣s, t, u ∈ C(PA−drt–ID)

}
We look at the transitions of both sides at the same time. Observe that the only
possible transition of the left-hand side is σrel(s) ‖ (νrel(t)+σrel(u))

σ→ s ‖ u, and
that the only possible transition of the right-hand side is σrel(s ‖ u) σ→ s ‖ u, and
note that (s ‖ u, s ‖ u) ∈ R.

�

Remark 3.2.12 (Soundness of PA−drt–ID)
Soundness of PA−drt–ID is also claimed (without proof) in Theorem 3.3 of [11].
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Remark 3.2.13 (Conservativity etc.)
In Theorem 3.2.15 and 3.2.16 below we use the concepts conservative extension, opera-
tionally conservative extension, path format, and sum of term deduction systems. For a
formal definition of these concepts see Section 2.4.1 of [13], and the references given
there.

Remark 3.2.14 (Proving Completeness using Verhoef’s Theorem)
Instead of using the direct proof method (outlined in Remark 2.2.18 on page 9) to prove
completeness, we can also use Verhoef’s General Completeness Theorem [25] to derive
completeness of a process theory P, given the completeness of a subtheory P′ of P. In
order to do this, we need to prove that P has the elimination property for P′, and that P
is a conservative extension of P′.

See Theorems 3.2.15 and 3.2.16 below for a example of this proof method. Further-
more, this method is used in the proofs of Theorems 3.4.15, 3.6.14, and 3.7.17.

Theorem 3.2.15 (Conservativity of PA−drt–ID with respect to BPA−drt–ID)
The equational specification PA−drt–ID is a conservative extension of the equational specifi-
cation BPA−drt–ID.

Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA−drt–ID is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPA−drt–ID) (see Theorem 2.5.17),

(iii). PA−drt–ID is a sound axiomatization with respect to the bisimulation equivalence
model induced by T(PA−drt–ID) (see Theorem 3.2.11),

(iv). T(PA−drt–ID) is an operationally conservative extension of T(BPA−drt–ID).

And in order for T(PA−drt–ID) indeed to be an operationally conservative extension of
T(BPA−drt–ID) we must verify the following conditions:

(i). T(BPA−drt–ID) is a pure, well-founded term deduction system in path format,

(ii). T(PA−drt–ID) is a term deduction system in path format,

(iii). T(BPA−drt–ID) ⊕ T(PA−drt–ID) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �

Theorem 3.2.16 (Completeness of PA−drt–ID)
The equational specification PA−drt–ID is a complete axiomatization of the set of closed
PA−drt–ID terms modulo bisimulation equivalence.

Proof By Verhoef’s General Completeness Theorem (see [25], or Theorem 2.4.26 of
[13]) this follows immediately from:

(i). PA−drt–ID has the elimination property for BPA−drt–ID (see Theorem 3.2.8),
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(ii). PA−drt–ID is a conservative extension of BPA−drt–ID (see Theorem 3.2.15).

�

Remark 3.2.17 (Completeness of PA−drt–ID)
Completeness of PA−drt–ID is also claimed (without proof) in Theorem 3.3 of [11].

3.3 Soundness and Completeness of PA−drt–ID′

Definition 3.3.1 (Signature of PA−drt–ID′)
The signature of PA−drt–ID′ is identical to the signature of PA−drt–ID as given in Definition
3.2.1; it consists of the undelayable atomic actions {a|a ∈ A}, the undelayable deadlock
constant δ, the alternative composition operator +, the sequential composition operator ·,
the time unit delay operator σrel, the “now” operator νrel, the (free) merge operator ‖, and
the left merge operator ‖ .

Definition 3.3.2 (Axioms of PA−drt–ID′)
The process algebra PA−drt–ID′ is axiomatized by the axioms of BPA−drt–ID given in Defini-
tion 2.5.2 on page 22, Axioms DRTM1–DRTM4 shown in Table 24 on page 69, and Axioms
DRTM7–DRTM11 shown in Table 27: PA−drt–ID′ = A1–A5 + DRT1–DRT5 + DCS1–DCS4 +
DRTM1–DRTM4 + DRTM7–DRTM11.

σrel(x) ‖ a = δ DRTM7

σrel(x) ‖ a · y = δ DRTM8

σrel(x) ‖ (a+ y) = σrel(x) ‖ y DRTM9

σrel(x) ‖ (a · y + z) = σrel(x) ‖ z DRTM10

σrel(x) ‖ σrel(y) = σrel(x ‖ y) DRTM11

Table 27: Additional axioms for PA−drt–ID′.

Definition 3.3.3 (Semantics of PA−drt–ID′)
The semantics of PA−drt–ID′ are given by the term deduction system T(PA−drt–ID′) which is
identical to the term deduction system T(PA−drt–ID) given in Definition 3.2.3 on page 69.

Definition 3.3.4 (Bisimulation and Bisimulation Model for PA−drt–ID′)
Bisimulation for PA−drt–ID′ and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “PA−drt–ID′” in Def-
inition 2.4.5 on page 14 and “BPA” by “PA−drt–ID′” in Definition 2.2.11 on page 8.

Definition 3.3.5 (Basic Terms of PA−drt–ID′)
If we speak of basic terms in the context of PA−drt–ID′, we mean (σ,δ)-basic terms as
defined in Definition 2.5.6 on page 23.

Definition 3.3.6 (Number of Symbols of a PA−drt–ID′ Term)
We define n(x), the number of symbols of x, inductively as follows:
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(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed PA−drt–ID′ terms x and y, we define n(x + y) = n(x · y) = n(x ‖ y) =
n(x ‖ y) = n(x) + n(y) + 1,

(iii). for a closed PA−drt–ID′ term x, we define n(σrel(x)) = n(νrel(x)) = n(x) + 1.

Theorem 3.3.7 (Elimination for PA−drt–ID′)
Let t be a closed PA−drt–ID′ term. Then there is a closed BPA−drt–ID term s such that
PA−drt–ID′ ` s = t.
Proof First a term rewriting system is given which is proven to be strongly normaliz-
ing. Thereafter, it is shown that every normal form of a closed PA−drt–ID′ term is a closed
BPA−drt–ID term.

The term rewriting system used is given in Table 28. Note that we have added natural
number subscripts n to the merge operators, in order to deal with the mutually recursive
nature of definition of these operators. For a description of this technique, and a rigorous
formal justification of its use, see Theorem 3.2.3 of [13] and the references given there.

x ‖n y → x ‖ n y + y ‖ n x RDRTM1

a ‖ n x→ a · x RDRTM2

a · x ‖ n+1 y → a · (x ‖n y) RDRTM3

(x+ y) ‖ n z → x ‖ n z + y ‖ n z RDRTM4

σrel(x) ‖ n a → δ RDRTM7

σrel(x) ‖ n a · y → δ RDRTM8

σrel(x) ‖ n (a+ y) → σrel(x) ‖ n y RDRTM9

σrel(x) ‖ n (a · y + z) → σrel(x) ‖ n z RDRTM10

σrel(x) ‖ n σrel(y) → σrel(x ‖ n y) RDRTM11

Table 28: Additional rewriting rules for PA−drt–ID′.

Using the method of the lexicographical path ordering we prove that the term rewriting
system associated with PA−drt–ID′ is strongly normalizing. Thereto, the operator · is as-
signed the lexicographical status of the first argument, and the following well-founded
ordering on constant and function symbols is used:

a < σrel < + < · < ‖ 2 < ‖2< ‖ 3 < · · · < ‖ n < ‖n< ‖ n+1 < . . .

That the left-hand side of every rewriting rule is bigger than the right-hand side with
respect to the ordering �lpo , is shown by the following reductions:

x ‖n y �lpo x ‖?n y �lpo x ‖?n y + x ‖?n y
�lpo (x ‖?n y) ‖ n (x ‖?n y) + (x ‖?n y) ‖ n (x ‖?n y)
�lpo x ‖ n y + y ‖ n x
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a ‖ n x�lpo a ‖?n x�lpo a ‖?n x · a ‖?n x
�lpo a · x

a · x ‖ n+1 y �lpo a · x ‖?n+1 y �lpo (a · x ‖?n+1 y) · (a · x ‖?n+1 y)
�lpo (a · x) · ((a · x ‖?n+1 y) ‖n (a · x ‖?n+1 y))
�lpo (a · x) · (a · x ‖n y) �lpo (a ·? x) · (a ·? x ‖n y)
�lpo a · (x ‖n y)

(x+ y) ‖ n z �lpo (x+ y) ‖?n z�lpo (x+ y) ‖?n z+ (x+ y) ‖?n z
�lpo (x+? y) ‖ n z+ (x+? y) ‖ n z �lpo (x ‖ n z) + (y ‖ n z)

σrel(x) ‖ n a�lpo σrel(x) ‖?n a
�lpo δ

σrel(x) ‖ n a · y �lpo σrel(x) ‖?n a · y
�lpo δ

σrel(x) ‖ n (a+ y) �lpo σrel(x) ‖?n (a+ y) �lpo σrel(x) ‖ n (a+? y)
�lpo σrel(x) ‖ n y

σrel(x) ‖ n (a · y + z) �lpo σrel(x) ‖?n (a · y + z) �lpo σrel(x) ‖ n (a · y +? z)
�lpo σrel(x) ‖ n z

σrel(x) ‖ n σrel(y) �lpo σrel(x) ‖?n σrel(y) �lpo σrel(σrel(x) ‖?n σrel(y))
�lpo σrel(σ?rel(x) ‖ n σ?rel(y)) �lpo σrel(x ‖ n y)

It remains to prove that every normal form of a closed PA−drt–ID′ term is a closed BPA−drt–ID
term. We prove this as follows: suppose that s is a normal form of a closed PA−drt–ID′

term, and furthermore suppose that s is not a closed BPA−drt–ID term. Now consider the
smallest subterm s′ of s that is not a closed BPA−drt–ID term. Then, s′ must be of the
form s′ ≡ s1 ‖ s2 or of the form s′ ≡ s1 ‖ s2 for closed BPA−drt–ID terms s1 and s2. By
the elimination theorem for BPA−drt–ID, Theorem 2.6.12, we may assume that s1 and s2
are basic terms. Now in the first case, s′ ≡ s1 ‖ s2, clearly rewriting rule RDRTM1 is
applicable. This contradicts the assumption that s is a normal form, so this case cannot
occur. In the second case, s′ ≡ s1 ‖ s2, it is not clear at first sight that a contradiction
can be derived. So, the following cases have to be considered for basic term s1:

(i). s1 ≡ a for some a ∈ Aδ. Then rewriting rule RDRTM2 is applicable.

(ii). s1 ≡ a · s′1 for some a ∈ Aδ and closed BPA−drt–ID term s′1. Clearly, rewriting rule
RDRTM3 is applicable.

(iii). s1 ≡ s′1 + s′′1 for some closed BPA−drt–ID terms s′1 and s′′1 . This time rewriting rule
RDRTM4 is applicable.

(iv). s1 ≡ σrel(s′1) for some closed BPA−drt–ID term s′1. The following cases can be consid-
ered for the general form of basic term s2:

(a) s2 ≡ a for some a ∈ Aδ. In this case rewriting rule RDRTM7 is applicable.

(b) s2 ≡ a·s′2 for some a ∈ A and basic term s′2. In this case rewriting rule RDRTM8
is applicable.
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(c) s2 ≡
∑
i<m
ai·s2,i+

∑
j<n
bj+

∑
k<p
σrel(s′2,k) form,n,p ∈ N, ai, bj ∈ Aδ, and s2,i and s′2,k

basic terms. In this case at least one of the rewriting rules RDRTM9, RDRTM10,
and RDRTM11 is applicable.

In every case a rewriting rule is applicable. Therefore s′ is not a normal form.
We see that in both cases s′ is not a normal form. But this contradicts the assumption

that s is a normal form. From this contradiction we conclude that s does not contain a
merge operator. Therefore s must be closed BPA−drt–ID term, which had to be proven. �

Corollary 3.3.8 (Elimination for PA−drt–ID′)
Let t be a closed PA−drt–ID′ term. Then there is a basic term s such that PA−drt–ID′ ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for PA−drt–ID′ (see Theorem 3.3.7),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 2.5.12),

(iii). the fact that all axioms of BPA−drt–ID are also contained in PA−drt–ID′.

�

Remark 3.3.9 (Elimination for PA−drt–ID′)
Elimination for a slightly different version of PA−drt–ID′ is also claimed (without proof) in
Theorem 3.4.2 of [13] (where PA−drt–ID′ is called PAδdt).

Definition 3.3.10 (Ground Equivalence of Equational Specifications)
Two equational specifications L1 = (Σ1, E1) and L2 = (Σ2, E2) are called ground equiv-
alent if they have identical signatures, i.e. Σ1 = Σ2, and the same equalities over closed
terms hold in both systems, i.e. for all closed terms s and t over the signature Σ1 (or Σ2)
we have L1 ` s = t iff L2 ` s = t.

Definition 3.3.11 (Ground Equivalence of Term Deduction Systems)
Two equational specifications T1 = (Σ1,D1) and T2 = (Σ2,D2) are called ground equiv-
alent if they have identical signatures, i.e. Σ1 = Σ2, and the same equalities over closed
terms hold in both systems, i.e. for all closed terms s and t over the signature Σ1 (or Σ2)
we have s ∼T1

t iff s ∼T2
t.

Theorem 3.3.12 (Ground Equivalence of PA−drt–ID and PA−drt–ID′)
For all closed PA−drt–ID terms s and t we have PA−drt–ID ` s = t if and only if PA−drt–ID′ `
s = t.
Proof It suffices to show that, for closed terms, every axiom of PA−drt–ID′ is deriv-
able from the axioms of PA−drt–ID, and vice versa, that, for closed terms, every axiom of
PA−drt–ID is derivable from the axioms of PA−drt–ID′. We can restrict ourselves to the ax-
ioms that are not shared by both theories.
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Part I

First, we show that Axioms DRTM7–DRTM11 of PA−drt–ID′ are derivable in PA−drt–ID:

Axiom DRTM7
PA−drt–ID ` σrel(x) ‖ a = δ

Consider the following derivation:

PA−drt–ID ` σrel(x) ‖ a = σrel(x) ‖ νrel(a) = δ

Axiom DRTM8
PA−drt–ID ` σrel(x) ‖ a · y = δ

Consider the following derivation:

PA−drt–ID ` σrel(x) ‖ a · y = σrel(x) ‖ νrel(a) · y = σrel(x) ‖ νrel(a · y) = δ

Axiom DRTM9
PA−drt–ID ` σrel(x) ‖ (a+ y) = σrel(x) ‖ y

By the Lemma 2.5.10, there is a basic terms s such that either PA−drt–ID ` y = νrel(y)
or PA−drt–ID ` y = νrel(y) + σrel(s). So, there are two cases to be distinguished.

(i). PA−drt–ID ` y = νrel(y). Then we have:

PA−drt–ID ` σrel(x) ‖ (a+ y) =
σrel(x) ‖ (a+ νrel(y)) =
σrel(x) ‖ (νrel(a) + νrel(y)) =
σrel(x) ‖ νrel(a+ y) =
δ =
σrel(x) ‖ νrel(y) =
σrel(x) ‖ y

(ii). PA−drt–ID ` y = νrel(y) +σrel(s). Then we have:

PA−drt–ID ` σrel(x) ‖ (a+ y) =
σrel(x) ‖ (a+ νrel(y) + σrel(s)) =
σrel(x) ‖ (νrel(a) + νrel(y) + σrel(s)) =
σrel(x) ‖ (νrel(a+ y) + σrel(s)) =
σrel(x) ‖ σrel(s) =
σrel(x) ‖ (νrel(y) +σrel(s)) =
σrel(x) ‖ y

Axiom DRTM10
PA−drt–ID ` σrel(x) ‖ (a · y + z) = σrel(x) ‖ z

Handled in the same way as the previous case.
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Axiom DRTM11
PA−drt–ID ` σrel(x) ‖ σrel(y) = σrel(x ‖ y)

Consider the following derivation: PA−drt–ID ` σrel(x) ‖ σrel(y) = σrel(x) ‖ (δ +
σrel(y)) = σrel(x) ‖ (νrel(δ) + σrel(y)) = σrel(x ‖ y).

Part II

Secondly, we show that Axioms DRTM5–DRTM6 of PA−drt–ID are derivable in PA−drt–ID′:

Axiom DRTM5
PA−drt–ID′ ` σrel(x) ‖ νrel(y) = δ

Use the general form of basic term y. Take:

y ≡
∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
σrel(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms ti and uk. Then we have:

PA−drt–ID′ `
σrel(x) ‖ νrel(y) =

σrel(x) ‖ νrel

∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
σrel(uk)

 =
σrel(x) ‖

∑
i<m
νrel(ai · ti) +

∑
j<n
νrel(bj) +

∑
k<p
νrel(σrel(uk))

 =
σrel(x) ‖

∑
i<m
νrel(ai) · ti +

∑
j<n
νrel(bj) +

∑
k<p
νrel(σrel(uk))

 =
σrel(x) ‖

∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
δ

 =
σrel(x) ‖

∑
i<m
ai · ti +

∑
j<n
bj+ δ

 =
σrel(x) ‖ δ =
δ

Axiom DRTM6

PA−drt–ID′ ` σrel(x) ‖ (νrel(y) + σrel(z)) = σrel(x ‖ z)

Use the general form of basic term y. Take:

y ≡
∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
σrel(uk)
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for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms ti and uk. Then we have:

PA−drt–ID′ `
σrel(x) ‖ (νrel(y) + σrel(z)) =

σrel(x) ‖
νrel

∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
σrel(uk)

+ σrel(z)

 =
σrel(x) ‖

∑
i<m
νrel(ai · ti) +

∑
j<n
νrel(bj) +

∑
k<p
νrel(σrel(uk)) + σrel(z)

 =
σrel(x) ‖

∑
i<m
νrel(ai) · ti +

∑
j<n
νrel(bj) +

∑
k<p
νrel(σrel(uk)) + σrel(z)

 =
σrel(x) ‖

∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
δ+ σrel(z)

 =
σrel(x) ‖

∑
i<m
ai · ti +

∑
j<n
bj+ σrel(z)

 =
σrel(x) ‖ σrel(z) =
σrel(x ‖ z)

�

Theorem 3.3.13 (Ground Equivalence of T(PA−drt–ID) and T(PA−drt–ID′))
The term deduction systems T(PA−drt–ID) and T(PA−drt–ID′) are ground equivalent.

Proof Both term deduction systems have the same signature and the same set of
deduction rules. Then it is trivial that the same equalities hold between closed terms. �

Remark 3.3.14 (Proving Soundness and Completeness using Ground Equivalence)
Next to the direct method for proving completeness (outlined in Remark 2.2.18 on
page 9), the indirect method (outlined in Remark 2.6.20 on page 44, or Verhoef’s method
(outlined in Remark 3.2.14 on page 75), we can also derive completeness of a process
theory P from the given completeness of a “sufficiently similar” process theory P′. As it
turns out, the intuitive notion “sufficiently similar” can be formalized by the notion of
ground equivalence. Using this method, we can also derive the soundness of P.

See Theorem 3.3.15 below for technical details, and the proofs of Corollaries 3.3.17,
3.3.19, 3.5.12, and 3.5.14 for applications of this proof method.

Theorem 3.3.15 (Soundness and Completeness)
Let L1 and L2 be ground equivalent equational specifications. Let T1 and T2 be ground
equivalent term deduction systems. Then, L1 is a sound axiomatization with respect to the
bisimulation equivalence model induced by T1 if and only if L2 is a sound axiomatization
with respect to the bisimulation equivalence model induced by T2. Also, L1 is a complete
axiomatization with respect to the bisimulation equivalence model induced by T1 if and
only if L2 is a complete axiomatization with respect to the bisimulation equivalence model
induced by T2.
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Proof Let L1 and L2 be ground equivalent equational specifications. Let T1 and T2

be ground equivalent term deduction systems. Suppose that L1 is a sound axiomatiza-
tion with respect to the bisimulation equivalence model induced by T1. Let s and t be
closed terms. Suppose that L2 ` s = t. By the ground equivalence of L1 and L2 we ob-
tain L1 ` s = t. Using that L1 is a sound axiomatization with respect to the bisimulation
equivalence model induced by T1 we have that s ∼T1

t. By the ground equivalence of T1

and T2 it follows that s ∼T2
t. The proof in the other direction is analogous. The second

part of the theorem is proven analogously. �

Remark 3.3.16 (Soundness and Completeness versus Elimination)
Note that it is useless to extend Theorem 3.3.15 to include an elimination result, as in
general elimination is used to prove ground equivalence between L1 and L2. In the proof
of Theorem 3.3.12 on page 79, for example, we use elimination to allow ourselves to re-
strict the proof to basic terms.

Corollary 3.3.17 (Soundness of PA−drt–ID′)
The set of closed PA−drt–ID′ terms modulo bisimulation equivalence is a model of PA−drt–ID′.

Proof This follows immediately from the following observations and Theorem 3.3.15:

(i). PA−drt–ID and PA−drt–ID′ are ground equivalent equational specifications (see Theo-
rem 3.3.12),

(ii). T(PA−drt–ID) and T(PA−drt–ID′) are ground equivalent term deduction systems (see
Theorem 3.3.13),

(iii). Soundness of PA−drt–ID (see Theorem 3.2.11).

�

Remark 3.3.18 (Soundness of PA−drt–ID′)
Soundness of a slightly different version of PA−drt–ID′ is also claimed (without proof) in
Theorem 3.4.3 of [13] (where PA−drt–ID′ is called PAδdt).

Corollary 3.3.19 (Completeness of PA−drt–ID′)
The equational specification PA−drt–ID′ is a complete axiomatization of the set of closed
PA−drt–ID′ terms modulo bisimulation equivalence.

Proof This follows immediately from the following observations and Theorem 3.3.15:

(i). PA−drt–ID and PA−drt–ID′ are ground equivalent equational specifications (see Theo-
rem 3.3.12),

(ii). T(PA−drt–ID) and T(PA−drt–ID′) are ground equivalent term deduction systems (see
Theorem 3.3.13),

(iii). Completeness of PA−drt–ID (see Theorem 3.2.16).

�

Remark 3.3.20 (Completeness of PA−drt–ID′)
Completeness of a slightly different version of PA−drt–ID′ is also claimed (without proof)
in Theorem 3.4.5 of [13] (where PA−drt–ID′ is called PAδdt).
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3.4 Soundness and Completeness of ACP−drt–ID

Definition 3.4.1 (Communication Function)
For this section, and all sections to come, we presume the existence of a fixed, commuta-
tive, associative, complete function γ : Aδ×Aδ → Aδ, that can be considered a parameter
of the respective theories. The function γ has to be strict in the sense that it should al-
ways evaluate to δ when one or both of its parameters is δ.

Definition 3.4.2 (Signature of ACP−drt–ID)
The signature of ACP−drt–ID consists of the undelayable atomic actions {a|a ∈ A}, the un-
delayable deadlock constant δ, the alternative composition operator +, the sequential
composition operator ·, the time unit delay operator σrel, the “now” operator νrel, the
(communicating) merge operator ‖, the left merge operator ‖ , and the communication
merge operator | .

Definition 3.4.3 (Axioms of ACP−drt–ID)
The process algebra ACP−drt–ID is axiomatized by the axioms of PA−drt–ID given in Defini-
tion 3.2.2 on page 69 minus Axiom DRTM1, plus Axioms DRTCM1–DRTCM5, DRTCM12–
DRTCM13, and DRTCF1–DRTCF2 shown in Table 29, and Axioms DRTCM6–DRTCM7
shown in Table 30 on the next page: ACP−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4
+ DRTM2–DRTM6 + DRTCM1–DRTCM7 + DRTCM12–DRTCM13 + DRTCF1–DRTCF2.

x ‖ y = x ‖ y + y ‖ x+ x | y DRTCM1

a | b · x = (a | b) · x DRTCM2

a · x | b = (a | b) · x DRTCM3

a · x | b · y = (a | b) · (x ‖ y) DRTCM4

σrel(x) | σrel(y) = σrel(x | y) DRTCM5

(x+ y) | z = x | z + y | z DRTCM12

x | (y + z) = x | y + x | z DRTCM13

a | b = c if γ(a, b) = c ≠ δ DRTCF1

a | b = δ if γ(a, b) = δ DRTCF2

Table 29: Axioms for the (communicating) merge.

Remark 3.4.4 (Axioms DRTCF1–DRTCF2)
Note that, by Definition 3.4.1, if we dropped the condition c ≠ δ in DRTCF1, then DRTCF2
would be a special case of DRTCF1, and so DRTCF2 would not be needed anymore. How-
ever, for historical reasons we retain DRTCF1 and DRTCF2 as given in Table 29.

Definition 3.4.5 (Semantics of ACP−drt–ID)
The semantics of ACP−drt–ID are given by the term deduction system T(ACP−drt–ID) in-
duced by the deduction rules for PA−drt–ID given in Definition 3.2.3 on page 69 and the
deduction rules for the (communicating) merge given in Table 31 on the next page.
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σrel(x) | νrel(y) = δ DRTCM6

νrel(x) |σrel(y) = δ DRTCM7

Table 30: Additional axioms for ACP−drt–ID.

x a→ x′, y b→ y′, γ(a,b) = c
x ‖ y c→ x′ ‖ y′

x a→ x′, y b→ y′, γ(a,b) = c
x | y c→ x′ ‖ y′

x a→ x′, y b→√, γ(a,b) = c
x ‖ y c→ x′

x a→ x′, y b→√, γ(a, b) = c
x | y c→ x′

x a→√, y b→ y′, γ(a, b) = c
x ‖ y c→ y′

x a→√, y b→ y′, γ(a,b) = c
x | y c→ y′

x a→√, y b→√, γ(a,b) = c
x ‖ y c→√

x a→√, y b→√, γ(a,b) = c
x | y c→√

x σ→ x′, y σ→ y′
x | y σ→ x′ | y′

Table 31: Deduction rules for the (communicating) merge.

Definition 3.4.6 (Bisimulation and Bisimulation Model for ACP−drt–ID)
Bisimulation for ACP−drt–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “ACP−drt–ID” in
Definition 2.4.5 on page 14 and “BPA” by “ACP−drt–ID” in Definition 2.2.11 on page 8.

Definition 3.4.7 (Basic Terms of ACP−drt–ID)
If we speak of basic terms in the context of ACP−drt–ID, we mean (σ,δ)-basic terms as
defined in Definition 2.5.6 on page 23.

Definition 3.4.8 (Number of Symbols of an ACP−drt–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed ACP−drt–ID terms x and y, we define n(x + y) = n(x · y) = n(x ‖ y) =
n(x ‖ y) = n(x | y) = n(x) + n(y) + 1,

(iii). for a closed ACP−drt–ID term x, we define n(σrel(x)) = n(νrel(x)) = n(x) + 1.

Theorem 3.4.9 (Elimination for ACP−drt–ID)
Let t be a closed ACP−drt–ID term. Then there is a closed BPA−drt–ID term s such that
ACP−drt–ID ` s = t.
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Proof Let t be a closed ACP−drt–ID term. The theorem is proven by induction on n(t)
and case distinction on the general structure of t.

(i). t ≡ a for some a ∈ Aδ. Then t is a closed BPA−drt–ID term.

(ii). t ≡ t1 + t2 for closed ACP−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that ACP−drt–ID ` t1 = s1 and ACP−drt–ID ` t2 = s2.
But then also ACP−drt–ID ` t1 + t2 = s1 + s2 and s1 + s2 is a closed BPA−drt–ID term.

(iii). t ≡ t1 · t2 for closed ACP−drt–ID terms t1 and t2. This case is treated analogously to
case (ii).

(iv). t ≡ σrel(t1) for a closed ACP−drt–ID term t1. This case is treated analogously to case
(ii).

(v). t ≡ νrel(t1) for a closed ACP−drt–ID term t1. This case is treated analogously to case
(ii).

(vi). t ≡ t1 ‖ t2 for closed ACP−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that ACP−drt–ID ` t1 = s1 and ACP−drt–ID ` t2 = s2.
By Theorem 2.5.12, the elimination theorem for BPA−drt–ID, there are basic terms
r1 and r2 such that BPA−drt–ID ` s1 = r1 and BPA−drt–ID ` s2 = r2. But then also,
ACP−drt–ID ` t1 = r1, ACP−drt–ID ` t2 = r2, and ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2. We
prove this case by induction on the structure of basic term r1:

(a) r1 ≡ a for some a ∈ Aδ. Then ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = a ‖ r2 = a · r2,
and a · r2 is a closed BPA−drt–ID term.

(b) r1 ≡ a · r ′1 for some a ∈ Aδ and basic term r ′1. Then ACP−drt–ID ` t1 ‖ t2 =
r1 ‖ r2 = a · r ′1 ‖ r2 = a · (r ′1 ‖ r2). By the induction hypothesis there exists a
closed BPA−drt–ID term p such that ACP−drt–ID ` r ′1 ‖ r2 = p. Then, ACP−drt–ID `
t1 ‖ t2 = a · (r ′1 ‖ r2) = a · p, and a · p is a closed BPA−drt–ID term.

(c) r1 ≡ r ′1 + r ′′1 for basic terms r ′1 and r ′′1 . Then ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2 =
(r ′1 + r ′′1 ) ‖ r2 = r ′1 ‖ r2 + r ′′1 ‖ r2. By induction there exist closed BPA−drt–ID
terms p1 and p2 such that ACP−drt–ID ` r ′1 ‖ r2 = p1 and ACP−drt–ID ` r ′′1 ‖ r2 =
p2. Then also ACP−drt–ID ` t1 ‖ t2 = r ′1 ‖ r2+ r ′′1 ‖ r2 = p1+ p2, and p1+p2 is
a closed BPA−drt–ID term.

(d) r1 ≡ σrel(r ′1) for a basic term r ′1. By Lemma 2.5.10 there is a basic term r ′2 such
that either ACP−drt–ID ` r2 = νrel(r2) or ACP−drt–ID ` r2 = νrel(r2) + σrel(r ′2)
with n(r ′2) < n(r2). With case analysis we obtain:

i. r2 = νrel(r2). Then ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ r2 =
σrel(r ′1) ‖ νrel(r2) = δ, and δ is a closed BPA−drt–ID term.

ii. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2. Then ACP−drt–ID ` t1 ‖ t2 =
r1 ‖ r2 = σrel(r ′1) ‖ t2 = σrel(r ′1) ‖ r2 = σrel(r ′1) ‖ (νrel(r2) +σrel(r ′2)) =
σrel(r ′1 ‖ r ′2). By the induction hypothesis there is a closed BPA−drt–ID term
p such that ACP−drt–ID ` r ′1 ‖ r ′2 = p. But then also ACP−drt–ID ` t1 ‖ t2 =
σrel(r ′1 ‖ r ′2) = σrel(p), and σrel(p) is a closed BPA−drt–ID term.
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(vii). t ≡ t1 | t2 for closed ACP−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that ACP−drt–ID ` t1 = s1 and ACP−drt–ID ` t2 = s2.
By Theorem 2.5.12, the elimination theorem for BPA−drt–ID, there are basic terms
r1 and r2 such that BPA−drt–ID ` s1 = r1 and BPA−drt–ID ` s2 = r2. But then also,
ACP−drt–ID ` t1 = r1, ACP−drt–ID ` t2 = r2, and ACP−drt–ID ` t1 | t2 = r1 | r2. We prove
this case by simultaneous induction on the structure of basic terms r1 and r2. We
examine all possible cases:

(a) r1 ≡ a and r2 ≡ b for some a, b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP−drt–ID ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPA−drt–ID term.

(b) r1 ≡ a and r2 ≡ b ·r ′2 for some a,b ∈ Aδ and some basic term r ′2. Suppose that
γ(a, b) = c. Then we have ACP−drt–ID ` t1 | t2 = r1 | r2 = a | b · r ′2 = c · r ′2, and
c · r ′2 is a closed BPA−drt–ID term.

(c) r1 ≡ a · r ′1 and r2 ≡ b for some a,b ∈ Aδ and some basic term r ′1. This case is
treated symmetrically to the previous case.

(d) r1 ≡ a · r ′1 and r2 ≡ b · r ′2 for some a,b ∈ Aδ and some basic terms r ′1 and
r ′2. Suppose that γ(a,b) = c. Then we have ACP−drt–ID ` t1 | t2 = r1 | r2 =
a · r ′1 | b · r ′2 = c · (r ′1 ‖ r ′2). By the induction hypothesis there exists a closed
BPA−drt–ID term s′ such that ACP−drt–ID ` r ′1 ‖ r ′2 = s′. So ACP−drt–ID ` t1 | t2 =
c · (r ′1 ‖ r ′2) = c · s′, and c · s′ is a closed BPA−drt–ID term.

(e) r1 ≡ r ′1 + r ′′1 for some basic terms r ′1 and r ′′1 , and r2 is of arbitrary form. Then
ACP−drt–ID ` t1 | t2 = r1 | r2 = (r ′1 + r ′′1 ) | r2 = r ′1 | r2 + r ′′1 | r2. By the induction
hypothesis there exist closed BPA−drt–ID terms p1 and p2 such that ACP−drt–ID `
r ′1 | r2 = p1 and ACP−drt–ID ` r ′′1 | r2 = p2. So, we have ACP−drt–ID ` t1 | t2 =
r ′1 | r2 + r ′′1 | r2 = p1 + p2, and p1 + p2 is a closed BPA−drt–ID term.

(f) r1 is of arbitrary form and r2 ≡ r ′2 + r ′′2 for some basic terms r ′2 and r ′′2 . This
case is treated symmetrically to the previous case.

(g) r1 ≡ σrel(r ′1) for some basic term r ′1, and r2 is of arbitrary form. By Lemma
2.5.10 there is a basic term r ′2 such that either ACP−drt–ID ` r2 = νrel(r2) or
ACP−drt–ID ` r2 = νrel(r2) +σrel(r ′2) with n(r ′2) < n(r2). With case analysis we
obtain:

i. r2 = νrel(r2). Then ACP−drt–ID ` t1 | t2 = r1 | r2 = σrel(r ′1) |νrel(r2) = δ, and
δ is a closed BPA−drt–ID term.

ii. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2. Then ACP−drt–ID ` t1 | t2 =
r1 | r2 = σrel(r ′1) | (νrel(r2) + σrel(r ′2)) = σrel(r ′1) | σrel(r ′2) = σrel(r ′1 | r ′2).
By the induction hypothesis there is a closed BPA−drt–ID term p such that
ACP−drt–ID ` r ′1 | r ′2 = p. But then also ACP−drt–ID ` t1 | t2 = σrel(r ′1 | r ′2) =
σrel(p), and σrel(p) is a closed BPA−drt–ID term.

(h) r1 is of arbitrary form and r2 ≡ σrel(r ′2) for some basic term r ′2. This case is
treated symmetrically to the previous case.

(viii). t ≡ t1 ‖ t2 for closed ACP−drt–ID terms t1 and t2. Then ACP−drt–ID ` t1 ‖ t2 = t1 ‖ t2+
t2 ‖ t1+ t1 | t2. By (vi) and (vii) there are closed BPA−drt–ID terms p1, p2, and p3, such
that ACP−drt–ID ` t1 ‖ t2 = p1, ACP−drt–ID ` t2 ‖ t1 = p2, and ACP−drt–ID ` t1 | t2 = p3.
But then also ACP−drt–ID ` t1 ‖ t2 = t1 ‖ t2 + t2 ‖ t1 + t1 | t2 = p1 + p2 + p3, and
p1 + p2 + p3 is a closed BPA−drt–ID term.
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Corollary 3.4.10 (Elimination for ACP−drt–ID)
Let t be a closed ACP−drt–ID term. Then there is a basic term s such that ACP−drt–ID ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for ACP−drt–ID (see Theorem 3.4.9),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 2.5.12),

(iii). the fact that all axioms of BPA−drt–ID are also contained in ACP−drt–ID.

�

Remark 3.4.11 (Elimination for ACP−drt–ID)
Elimination for ACP−drt–ID is also claimed (without proof) in Theorem 4.2 of [11].

Theorem 3.4.12 (Soundness of ACP−drt–ID)
The set of closed ACP−drt–ID terms modulo bisimulation equivalence is a model of ACP−drt–ID.

Proof We only prove soundness for the axioms which are added to BPA−drt–ID to ob-
tain ACP−drt–ID.

Axioms DRTM2–DRTM6 The proofs for the soundness of these axioms with respect to
PA−drt–ID that are given in Theorem 3.2.11 remain valid, since there are no new de-
duction rules dealing with ‖ .

Axiom DRTCM1 Take the relation:

R = {(s, s), (s ‖ t, t ‖ s), (s ‖ t, s ‖ t + t ‖ s + s | t)∣∣s, t ∈ C(ACP−drt–ID)
}

First we look at the transitions of the left-hand side:

(i). Suppose that s ‖ t a→ p. First we look at the (s ‖ t, t ‖ s) pairs. By inspection of
the deduction rules we distinguish the following cases:

(a) s a→ p1 and p ≡ p1 ‖ t. Then t ‖ s a→ t ‖ p1, and (p1 ‖ t, t ‖ p1) ∈ R
(b) t a→ p2 and p ≡ s ‖ p2. Then t ‖ s a→ p2 ‖ s, and (s ‖ p2, p2 ‖ s) ∈ R.

(c) s a→√ and p ≡ t. Then t ‖ s a→ t, and (t, t) ∈ R.

(d) t a→√ and p ≡ s. Then t ‖ s a→ s, and (s, s) ∈ R.

(e) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then t ‖ s a→ p2 ‖ p1, and
(p1 ‖ p2, p2 ‖ p1) ∈ R.

(f) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then t ‖ s a→ p2, and (p2, p2) ∈ R.

(g) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then t ‖ s a→ p1, and (p1, p1) ∈ R.

We continue with the (s ‖ t, s ‖ t+ t ‖ s) pairs. Distinguishing the same cases
as above, we derive:

(a) s ‖ t a→ p1 ‖ t. Then s ‖ t + t ‖ s + s | t a→ p1 ‖ t, and (p1 ‖ t, t ‖ p1) ∈ R.

(b) t ‖ s a→ p2 ‖ s. Then s ‖ t + t ‖ s + s | t a→ t ‖ p2, and (s ‖ p2, p2 ‖ s) ∈ R.

(c) s ‖ t a→ t. Then s ‖ t + t ‖ s + s | t a→ t, and (t, t) ∈ R.
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(d) t ‖ s a→ s. Then s ‖ t + t ‖ s + s | t a→ s, and (s, s) ∈ R.
(e) s |t a→ p1 ‖ p2. Then s ‖ t+t ‖ s+s |t a→ p1 ‖ p2, and (p1 ‖ p2, p1 ‖ p2) ∈ R.
(f) s | t a→ p2. Then s ‖ t + t ‖ s + s | t a→ p2, and (p2, p2) ∈ R.
(g) s | t a→ p1. Then s ‖ t + t ‖ s + s | t a→ p1, and (p1, p1) ∈ R.

(ii). Suppose that s ‖ t a→√. By inspection of the deduction rules we can con-
clude that s b→√, t c→√, and γ(b, c) = a. Therefore, t ‖ s a→√, and continuing,
s | t a→√, so s ‖ t + t ‖ s + s | t a→√.

(iii). Suppose that s ‖ t σ→ p. By inspection of the deduction rules we can conclude
that s σ→ p1 and t σ→ p2 and p ≡ p1 ‖ p2. Therefore, t ‖ s σ→ p2 ‖ p1, and
note that (p1 ‖ p2, p2 ‖ p1) ∈ R. Continuing, we also have s ‖ t σ→ p1 ‖ p2

t ‖ s σ→ p2 ‖ p1, and s | t σ→ p1 | p2. Therefore, s ‖ t + t ‖ s + s | t σ→ p1 ‖ p2 +
p2 ‖ p1 + p1 | p2, and note that (p1 ‖ p2, p1 ‖ p2 + p2 ‖ p1 + p1 | p2) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose that t ‖ s a→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(ii). Suppose that t ‖ s a→√. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(iii). Suppose that t ‖ s σ→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(iv). Suppose that s ‖ t + t ‖ s + s | t a→ p. By inspection of the deduction rules we
distinguish the following cases:

(a) s a→ p1 and p ≡ p1 ‖ t. Then s ‖ t a→ p1 ‖ t, and (p1 ‖ t, p1 ‖ t) ∈ R.
(b) t a→ p2 and p ≡ p2 ‖ s. Then s ‖ t a→ s ‖ p2, and (s ‖ p2, p2 ‖ s) ∈ R.
(c) s a→√ and p ≡ t. Then s ‖ t a→ t, and (t, t) ∈ R.
(d) t a→√ and p ≡ s. Then s ‖ t a→ s, and (s, s) ∈ R.
(e) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then s ‖ t a→ p1 ‖ p2, and
(p1 ‖ p2, p2 ‖ p1) ∈ R.

(f) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then s ‖ t a→ p2, and (p2, p2) ∈ R.
(g) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then s ‖ t a→ p1, and (p1, p1) ∈ R.

(v). Suppose that s ‖ t + t ‖ s+ s | t a→√. By inspection of the deduction rules we
can conclude that s b→√, t c→√, and γ(b, c) = a. Therefore, s ‖ t a→√.

(vi). Suppose that s ‖ t + t ‖ s + s | t σ→ p. By inspection of the deduction rules we
can conclude that s σ→ p1, t σ→ p2, and p ≡ p1 ‖ p2 + p2 ‖ p1 + p1 | p2. Since
both s and t can perform a σ transition, we obtain s ‖ t σ→ p1 ‖ p2, and note
that (p1 ‖ p2, p1 ‖ p2 + p2 ‖ p1 + p1 | p2) ∈ R.

Axiom DRTCM2 Take the relation:

R = {(s, s), (a | b · s, (a | b) · s)∣∣s ∈ C(ACP−drt–ID)
}

We look at the transitions of both sides at the same time. First, if γ(a, b) = δ there
are no transitions possible on either side, and we are done. Otherwise, suppose
γ(a, b) = c. Then the only possible transition on the left-hand side is a · s | b c→ s,
and the only possible transition on the right-hand side is (a | b) · s c→ s, and note
that (s, s) ∈ R.
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Axiom DRTCM3 Take the relation:

R = {(s, s), (a · s | b, (a | b) · s)∣∣s ∈ C(ACP−drt–ID)
}

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCM4 Take the relation:

R = {(s, s), (a · s | b · t, (a | b) · (s ‖ t))∣∣s, t ∈ C(ACP−drt–ID)
}

We look at the transitions of both sides at the same time. First, if γ(a, b) = δ there
are no transitions possible on either side, and we are done. Otherwise, suppose
γ(a, b) = c. Then the only possible transition on the left-hand side is a·s|b·t c→ s ‖
t, and the only possible transition on the right-hand side is (a | b) · (s ‖ t) c→ s ‖ t,
and note that (s ‖ t, s ‖ t) ∈ R.

Axiom DRTCM5 Take the relation:

R = {(σrel(s) |σrel(t),σrel(s | t))
∣∣s, t ∈ C(ACP−drt–ID)

}
We look at the transitions of both sides at the same time. The only possible transi-
tion of the left-hand side is σrel(s) |σrel(t)

σ→ s | t, and the only possible transition
of the right-hand side is σrel(s | t) σ→ s | t, and note that (s | t, s | t) ∈ R.

Axiom DRTCM6 Take the relation:

R = {(σrel(s) | νrel(t),δ)
∣∣s ∈ C(ACP−drt–ID)

}
We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: σrel(s)|νrel(t)3 . Also for the right-hand
side there are no transitions possible: δ3 .

Axiom DRTCM7 Take the relation:

R = {(νrel(x) | σrel(y), δ)}

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCM12 Take the relation:

R = {(s, s), ((s + t) | u, s | u + t | u)∣∣s, t, u ∈ C(ACP−drt–ID)
}

First we look at the transitions of the left-hand side.

(i). Suppose that (s+t)|u a→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then s | u a→ p1 ‖ p2, so also
s | u + t | u a→ p1 ‖ p2, and note that (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) t b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. This case is treated symmet-
rically to the previous case.

(c) s b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. Then s | u a→ p2, so also s | u +
t | u a→ p2, and note that (p2, p2) ∈ R.
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(d) t b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. This case is treated symmetrically
to the previous case.

(e) s b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. Then s | u a→ p1, so also s | u +
t | u a→ p1, and note that (p1, p1) ∈ R.

(f) t b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. This case is treated symmetrically
to the previous case.

(ii). Suppose that (s + t) | u a→√.

(a) s b→√, u c→√, and γ(b, c) = a. Then s | u a→√, so also s | u + t | u a→√.

(b) t b→√, u c→√, and γ(b, c) = a. This case is treated symmetrically to the
previous case.

(iii). Suppose that (s+t)|u σ→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s σ→ p1, t σ3 , u σ→ p2, and p ≡ p1 | p2. Then s | u σ→ p1 | p2 and t | u σ
3 , so

s | u + t | u σ→ p1 | p2, and note that (p1 | p2, p1 | p2) ∈ R.

(b) s σ3 , t σ→ p1, u σ→ p2, and p ≡ p1 | p2. This case is treated symmetrically to
the previous case.

(c) s σ→ p1, t σ→ p2, u σ→ p3, and p ≡ (p1 + p2) | p3. Then s | u σ→ p1 | p3 and
t|u σ→ p2|p3, so s|u+t|u σ→ p1|p3+p2|p3, and note that ((p1+p2)|p3, p1|p3+
p2 | p3) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose that s|u+t|u a→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then s + t b→ p1, so (s +
t) | u a→ p1 ‖ p2, and note that (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) t b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. This case is treated symmet-
rically to the previous case.

(c) s b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. Then s + t b→√, so (s + t) | u a→ p2,
and note that (p2, p2).

(d) t b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. This case is treated symmetrically
to the previous case.

(e) s b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. Then s+ t b→ p1, so (s+ t) | u a→ p1,
and note that (p1, p1).

(f) t b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. This case is treated symmetrically
to the previous case.

(ii). Suppose that s|u+t|u a→√. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→√, u c→√, and γ(b, c) = a. Then s + t b→√, so (s + t) | u a→√.

(b) t b→√, u c→√, and γ(b, c) = a. This case is treated symmetrically to the
previous case.

(iii). Suppose that s|u+t|u σ→ p. By inspection of the deduction rules we distinguish
the following cases:
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(a) s σ→ p1, t σ3 , u σ→ p2, and p ≡ p1 |p2. Then s+ t σ→ p1, so (s+ t) |u σ→ p1 |p2,
and note that (p1 | p2, p1 | p2) ∈ R.

(b) s σ3 , t σ→ p1, u σ→ p2, and p ≡ p1 | p2. This case is treated symmetrically to
the previous case.

(c) s σ→ p1, t σ→ p2, u σ→ p3, and p ≡ p1 | p3 + p2 | p3. Then s + t σ→ p1 + p2, so
(s+ t) |u σ→ (p1+p2) |p3, and note that ((p1+p2) |p3, p1 |p3+p2 |p3) ∈ R.

Axiom DRTCM13 Take the relation:

R = {(s, s), (s | (t + u), s | t + s | u)∣∣s, t, u ∈ C(ACP−drt–ID)
}

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCF1 Take the relation:
R = {(a | b, c)}

We look at the transitions of both sides at the same time. By the definition of Axiom
DRTCF1 we have that γ(a, b) = c ≠ δ. Then the only possible transition of the left-
hand side is a | b c→√, and the only possible transition of the right-hand side is
c c→√.

Axiom DRTCF2 Take the relation:
R = {(a | b, δ)}

We look at the transitions of both sides at the same time. As, by the definition of
Axiom DRTCF2, we have that γ(a, b) = δ, there are no transitions possible on either
side.

�

Remark 3.4.13 (Soundness of ACP−drt–ID)
Soundness of ACP−drt–ID is also claimed (without proof) in Theorem 4.2 of [11].

Theorem 3.4.14 (Conservativity of ACP−drt–ID with respect to BPA−drt–ID)
The equational specification ACP−drt–ID is a conservative extension of the equational spec-
ification BPA−drt–ID.

Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA−drt–ID is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPA−drt–ID) (see Theorem 2.5.17),

(iii). ACP−drt–ID is a sound axiomatization with respect to the bisimulation equivalence
model induced by T(ACP−drt–ID) (see Theorem 3.4.12),

(iv). T(ACP−drt–ID) is an operationally conservative extension of T(BPA−drt–ID).

And in order for T(ACP−drt–ID) indeed to be an operationally conservative extension of
T(BPA−drt–ID) we must verify the following conditions:
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(i). T(BPA−drt–ID) is a pure, well-founded term deduction system in path format,

(ii). T(ACP−drt–ID) is a term deduction system in path format,

(iii). T(BPA−drt–ID) ⊕ T(ACP−drt–ID) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �

Theorem 3.4.15 (Completeness of ACP−drt–ID)
The equational specification ACP−drt–ID is a complete axiomatization of the set of closed
ACP−drt–ID terms modulo bisimulation equivalence.

Proof By Verhoef’s General Completeness Theorem (see [25], or Theorem 2.4.26 of
[13]) this follows immediately from:

(i). ACP−drt–ID has the elimination property for BPA−drt–ID (see Theorem 3.4.9),

(ii). ACP−drt–ID is a conservative extension of BPA−drt–ID (see Theorem 3.4.14).

�

Remark 3.4.16 (Completeness of ACP−drt–ID)
Completeness of ACP−drt–ID is also claimed (without proof) in Theorem 4.2 of [11].

3.5 Soundness and Completeness of ACP−drt–ID′

Definition 3.5.1 (Signature of ACP−drt–ID′)
The signature of ACP−drt–ID′ is identical to the signature of ACP−drt–ID as given in Definition
3.4.2; it consists of the undelayable atomic actions {a|a ∈ A}, the undelayable deadlock
constant δ, the alternative composition operator +, the sequential composition operator ·,
the time unit delay operator σrel, the “now” operator νrel, the (communicating) merge
operator ‖, the left merge operator ‖ , and the communication merge operator | .

Definition 3.5.2 (Axioms of ACP−drt–ID′)
The process algebra ACP−drt–ID′ is axiomatized by the axioms of PA−drt–ID′ given in Defini-
tion 3.3.2 on page 76 minus Axiom DRTM1, plus Axioms DRTCM1–DRTCM5, DRTCM12–
DRTCM13, and DRTCF1–DRTCF2 shown in Table 29 on page 84, and Axioms DRTCM8–
DRTCM11 shown in Table 32 on the next page: ACP−drt–ID′ = A1–A5 + DRT1–DRT5 +
DCS1–DCS4 + DRTM2–DRTM4, DRTM7–DRTM11 + DRTCM1–DRTCM5 + DRTCM8–13 +
DRTCF1–DRTCF2.

Definition 3.5.3 (Semantics of ACP−drt–ID′)
The semantics of ACP−drt–ID′ are given by the term deduction system T(ACP−drt–ID′) which
is identical to the term deduction system T(ACP−drt–ID) given in Definition 3.4.5 on
page 84.

Definition 3.5.4 (Bisimulation and Bisimulation Model for ACP−drt–ID′)
Bisimulation for ACP−drt–ID′ and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “ACP−drt–ID′” in
Definition 2.4.5 on page 14 and “BPA” by “ACP−drt–ID′” in Definition 2.2.11 on page 8.
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a | σrel(x) = δ DRTCM8

σrel(x) | a = δ DRTCM9

a · x |σrel(y) = δ DRTCM10

σrel(x) | a · y = δ DRTCM11

Table 32: Additional axioms for ACP−drt–ID′.

Definition 3.5.5 (Basic Terms of ACP−drt–ID′)
If we speak of basic terms in the context of ACP−drt–ID′, we mean (σ,δ)-basic terms as
defined in Definition 2.5.6 on page 23.

Definition 3.5.6 (Number of Symbols of an ACP−drt–ID′ Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed ACP−drt–ID′ terms x and y, we define n(x+ y) = n(x · y) = n(x ‖ y) =
n(x ‖ y) = n(x | y) = n(x) + n(y) + 1,

(iii). for a closed ACP−drt–ID′ term x, we define n(σrel(x)) = n(νrel(x)) = n(x) + 1.

Theorem 3.5.7 (Elimination for ACP−drt–ID′)
Let t be a closed ACP−drt–ID′ term. Then there is a closed BPA−drt–ID term s such that
ACP−drt–ID′ ` s = t.
Proof First a term rewriting system is given which is proven to be strongly normaliz-
ing. Thereafter, it is shown that every normal form of a closed ACP−drt–ID′ term is a closed
BPA−drt–ID term.

The term rewriting system used is given in Table 33 on the following page. Note that
we have added natural number subscripts n to the merge operators, in order to deal with
the mutually recursive nature of definition of these operators. For a description of this
technique, and a rigorous formal justification of its use, see Theorem 3.2.3 of [13] and
the references given there. Using the method of the lexicographical path ordering we
prove that the term rewriting system associated with ACP−drt–ID′ is strongly normalizing.
Thereto, the operator · is assigned the lexicographical status of the first argument, and
the following well-founded ordering on constant and function symbols is used:

a < σrel < + < · < ‖ 2 , |2 < ‖2< ‖ 3 , |3 < · · · < ‖ n , |n < ‖n< ‖ n+1 , |n+1 < . . .

That the left-hand side of every rewriting rule is bigger than the right-hand side with
respect to the ordering �lpo , is shown by the following reductions:

x ‖n y �lpo x ‖?n y �lpo x ‖?n y + x ‖?n y �lpo x ‖?n y + x ‖?n y + x ‖?n y
�lpo (x ‖?n y) ‖ n (x ‖?n y) + (x ‖?n y) ‖ n (x ‖?n y) + (x ‖?n y) |n(x ‖?n y)
�lpo x ‖ n y + y ‖ n x+ x |ny
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x ‖n y → x ‖ n y + y ‖ n x+ x |ny RDRTCM1

a ‖ n x→ a · x RDRTM2

a · x ‖ n+1 y → a · (x ‖n y) RDRTM3

(x+ y) ‖ n z → x ‖ n z+ y ‖ n z RDRTM4

σrel(x) ‖ n a → δ RDRTM7

σrel(x) ‖ n a · y → δ RDRTM8

σrel(x) ‖ n (a+ y) → σrel(x) ‖ n y RDRTM9

σrel(x) ‖ n (a · y + z) → σrel(x) ‖ n z RDRTM10

σrel(x) ‖ n σrel(y) → σrel(x ‖ n y) RDRTM11

a |nb → c if γ(a, b) = c ≠ δ RDRTCF1

a |nb → δ if γ(a, b) = δ RDRTCF2

a |nb · x→ (a |nb) · x RDRTCM2

a · x |nb → (a |nb) · x RDRTCM3

a · x |n+1b · y → (a |n+1b) · (x ‖n y) RDRTCM4

σrel(x) |nσrel(y) → σrel(x |ny) RDRTCM5

a |nσrel(x) → δ RDRTCM8

σrel(x) |na → δ RDRTCM9

a · x |nσrel(y) → δ RDRTCM10

σrel(x) |na · y → δ RDRTCM11

(x+ y) |nz → x |nz + y |nz RDRTCM12

x |n(y + z) → x |ny + x |nz RDRTCM13

Table 33: Term rewriting system for ACP−drt–ID′.

a |nb �lpo a |?n b
�lpo c

a |nb �lpo a |?n b
�lpo δ

a |nb · x�lpo a |?n b · x�lpo (a |?n b · x) · (a |?n b · x) �lpo (a |nb ·? x) · (b · x)
�lpo (a |nb) · (b · x) �lpo (a |nb) ·? (b · x) �lpo (a |nb) · (b ·? x)
�lpo (a |nb) · x

a · x |nb �lpo a · x |?n b �lpo (a · x |?n b) · (a · x |?n b) �lpo (a ·? x |nb) · (a · x)
�lpo (a |nb) · (a · x) �lpo (a |nb) ·? (a · x) �lpo (a |nb) · (a ·? x)
�lpo (a |nb) · x
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a · x |n+1b · y �lpo a · x |?n+1
b · y �lpo (a · x |?n+1

b · y) · (a · x |?
n+1
b · y)

�lpo (a · x |?n+1
b · y) · ((a · x |?

n+1
b · y) ‖n (a · x |?n+1

b · y))
�lpo (a ·? x |n+1b ·? y) · ((a · x |?n+1

b · y) ‖n (a · x |?n+1
b · y))

�lpo (a |n+1b) · (a · x ‖n b · y) �lpo (a |n+1b) · (a ·? x ‖n b? · y)
�lpo (a |n+1b) · (x ‖n y)

σrel(x) |nσrel(y) �lpo σrel(x) |?n σrel(y) �lpo σrel(σrel(x) |?n σrel(y))
�lpo σrel(σ?rel(x) |nσ?rel(y)) �lpo σrel(x |ny)

a |nσrel(x) �lpo a |?n σrel(x)
�lpo δ

σrel(x) |na�lpo σrel(x) |?n a
�lpo δ

a · x |nσrel(y) �lpo a · x |?n σrel(y)
�lpo δ

σrel(x) |na · y �lpo σrel(x) |?n a · y
�lpo δ

(x+ y) |nz �lpo (x+ y) |?n z �lpo (x+ y) |?n z + (x+ y) |?n z
�lpo (x+? y) |nz + (x+? y) |nz �lpo (x |nz) + (y |nz)

x |n(y + z) �lpo x |?n (y + z) �lpo x |?n (y + z) + x |?n (y+ z)
�lpo x |n(y +? z) + x |n(y+? z) �lpo x |n(y) + x |n(z)

Note that we do not give reductions for RDRTM2–RDRTM11, as these already have been
given in the proof of Theorem 3.5.7, and since the new ordering is a proper extension of
the old one, these proofs remain valid.

It remains to prove that every normal form of a closed ACP−drt–ID′ term is a closed
BPA−drt–ID term. We prove this as follows: suppose that s is a normal form of a closed
ACP−drt–ID′ term, and furthermore suppose that s is not a closed BPA−drt–ID term. Now
consider the smallest subterm s′ of s that is not a closed BPA−drt–ID term. Then, s′ must
be of the form s′ ≡ s1 ‖ s2, of the form s′ ≡ s1 ‖ s2, or of the form s′ ≡ s1 | s2, for closed
BPA−drt–ID terms s1 and s2. By the elimination theorem for BPA−drt–ID, Theorem 2.6.12,
we may assume that s1 and s2 are basic terms. Now in the first case, s′ ≡ s1 ‖ s2, clearly
rewriting rule RDRTCM1 is applicable. This contradicts the assumption that s is a normal
form, so this case cannot occur That the second case, s′ ≡ s1 ‖ s2, cannot occur is proven
in the same way as already done in the proof of the elimination theorem for PA−drt–ID′,
Theorem 3.3.7. So it remains to derive a contradiction for the third case, s′ ≡ s1 | s2. The
following cases can be considered for basic terms s1 and s2 (for some a,b ∈ Aδ and basic
terms s′1, s′′1 , s′2, s

′′
2 ):

(i). If s1 ≡ a and s2 ≡ b we can apply RDRTCF1 if γ(a,b) ≠ δ, if not, we can apply
RDRTCF2.

(ii). If s1 ≡ a and s2 ≡ b · s′2, we can apply RDRTCM2.

(iii). If s1 ≡ a and s2 ≡ σrel(s′2), we can apply RDRTCM8.

(iv). If s1 ≡ a · s′1 and s2 ≡ b, we can apply RDRTCM3.
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(v). If s1 ≡ a · s′1 and s2 ≡ b · s′2, we can apply RDRTCM4.

(vi). If s1 ≡ a · s′1 and s2 ≡ σrel(s′2), we can apply RDRTCM10.

(vii). If s1 ≡ σrel(s′1) and s2 ≡ b, we can apply RDRTCM9.

(viii). If s1 ≡ σrel(s′1) and s2 ≡ b · s′2, we can apply RDRTCM11.

(ix). If s1 ≡ σrel(s′1) and s2 ≡ σrel(s′2), we can apply RDRTCM5.

(x). If s1 ≡ s′1 + s′′1 and s2 is of an arbitrary form, we can apply RDRTCM12.

(xi). If s1 is of an arbitrary form and s2 ≡ s′2 + s′′2 , we can apply RDRTCM13.

This sums up all possible sixteen cases (with seven cases thrown together in (x). and (xi).).
In all of these cases we can apply one of the rewriting rules, so s′ is not a normal form.
This contradicts the assumption that s is a normal form. From this contradiction we con-
clude that s does not contain a merge operator. Therefore s must be closed BPA−drt–ID
term, which had to be proven. �

Corollary 3.5.8 (Elimination for ACP−drt–ID′)
Let t be a closed ACP−drt–ID′ term. Then there is a basic term s such that ACP−drt–ID′ ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for ACP−drt–ID′ (see Theorem 3.5.7),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 2.5.12),

(iii). the fact that all axioms of BPA−drt–ID are also contained in ACP−drt–ID′.

�

Remark 3.5.9 (Elimination for ACP−drt–ID′)
Elimination for a slightly different version of ACP−drt–ID′ is also claimed (without proof)
in Theorem 3.6.4 of [13] (where ACP−drt–ID′ is called ACPdt).

Theorem 3.5.10 (Ground Equivalence of ACP−drt–ID and ACP−drt–ID′)
For all closed ACP−drt–ID terms s and t we have ACP−drt–ID ` s = t if and only if ACP−drt–ID′ `
s = t.
Proof It suffices to show that, for closed terms, every axiom of ACP−drt–ID′ is deriv-
able from the axioms of ACP−drt–ID, and vice versa, that, for closed terms, every axiom
of ACP−drt–ID is derivable from the axioms of ACP−drt–ID′. We can restrict ourselves to the
axioms that are not shared by both theories. Furthermore, the proofs regarding Axioms
DRTM5–DRTM11 that are given in Theorem 3.3.12 on page 79, with respect to PA−drt–ID
and PA−drt–ID′, remain valid with respect to ACP−drt–ID and ACP−drt–ID′.
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Part I

First, we show that Axioms DRTCM8–DRTCM11 of ACP−drt–ID′ are derivable in ACP−drt–ID:

Axiom DRTCM8
ACP−drt–ID ` a | σrel(x) = δ

Consider the following derivation:

ACP−drt–ID ` a |σrel(x) = νrel(a) |σrel(x) = δ

Axiom DRTCM9
ACP−drt–ID ` σrel(x) | a = δ

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCM10
ACP−drt–ID ` a · x |σrel(y) = δ

Consider the following derivation:

ACP−drt–ID ` a · x | σrel(y) = νrel(a) · x |σrel(y) = νrel(a · x) |σrel(y) = δ

Axiom DRTCM11
ACP−drt–ID ` σrel(x) | a · y = δ

This axiom is treated symmetrically to the previous axiom.

Part II

Secondly, we show that Axioms DRTCM6–DRTCM7 of ACP−drt–ID are also derivable in
ACP−drt–ID′:

Axiom DRTCM6
ACP−drt–ID′ ` σrel(x) | νrel(y) = δ

Use the general form of basic term y. Take:

y ≡
∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
σrel(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms ti and uk. Then we have:

ACP−drt–ID′ ` σrel(x) | νrel(y) =

σrel(x) | νrel

∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
σrel(uk)

 =
σrel(x) |

∑
i<m
νrel(ai · ti) +

∑
j<n
νrel(bj) +

∑
k<p
νrel(σrel(uk))

 =
σrel(x) |

∑
i<m
νrel(ai) · ti +

∑
j<n
νrel(bj) +

∑
k<p
νrel(σrel(uk))

 =
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σrel(x) |
∑
i<m
ai · ti +

∑
j<n
bj+

∑
k<p
δ

 =
σrel(x) |

∑
i<m
ai · ti

+
σrel(x) |

∑
j<n
bj

+
σrel(x) |

∑
k<p
δ

 =
∑
i<m
σrel(x) | ai · ti

+
∑
j<n
σrel(x) | bj

+
∑
k<p
σrel(x) | δ

 =
∑
i<m
δ+

∑
j<n
δ+

∑
k<p
δ =

δ

Axiom DRTCM7
ACP−drt–ID′ ` νrel(x) |σrel(y) = δ

This axiom is treated symmetrically to the previous axiom.

�

Theorem 3.5.11 (Ground Equivalence of T(ACP−drt–ID) and T(ACP−drt–ID′))
The term deduction systems T(ACP−drt–ID) and T(ACP−drt–ID′) are ground equivalent.

Proof Both term deduction systems have the same signature and the same set of
deduction rules. Then it is trivial that the same equalities hold between closed terms. �

Corollary 3.5.12 (Soundness of ACP−drt–ID′)
The set of all closed ACP−drt–ID′ terms modulo bisimulation equivalence is a model of
ACP−drt–ID′.

Proof This follows immediately from the following observations and Theorem 3.3.15:

(i). ACP−drt–ID and ACP−drt–ID′ are ground equivalent equational specifications (see The-
orem 3.5.10),

(ii). T(ACP−drt–ID) and T(ACP−drt–ID′) are ground equivalent term deduction systems
(see Theorem 3.5.11),

(iii). Soundness of ACP−drt–ID (see Theorem 3.4.12).

�

Remark 3.5.13 (Soundness of ACP−drt–ID′)
Soundness of a slightly different version of ACP−drt–ID′ is also claimed (without proof) in
Theorem 3.6.5 of [13] (where ACP−drt–ID′ is called ACPdt).

Corollary 3.5.14 (Completeness of ACP−drt–ID′)
The equational specification ACP−drt–ID′ is a complete axiomatization of the set of closed
ACP−drt–ID′ terms modulo bisimulation equivalence.

Proof This follows immediately from the following observations and Theorem 3.3.15:
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(i). ACP−drt–ID and ACP−drt–ID′ are ground equivalent equational specifications (see The-
orem 3.5.10),

(ii). T(ACP−drt–ID) and T(ACP−drt–ID′) are ground equivalent term deduction systems
(see Theorem 3.5.11),

(iii). Completeness of ACP−drt–ID (see Theorem 3.4.15).

�

Remark 3.5.15 (Completeness of ACP−drt–ID′)
Completeness of a slightly different version of ACP−drt–ID′ is also claimed (without proof)
in Theorem 3.6.7 of [13] (where ACP−drt–ID′ is called ACPdt).

3.6 Soundness and Completeness of PA+drt

Definition 3.6.1 (Signature of PAdrt)
The signature of PAdrt consists of the undelayable atomic actions {a|a ∈ A}, the delayable
atomic actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock
constant δ, the immediate deadlock constant δ̇, the alternative composition operator +,
the sequential composition operator ·, the time unit delay operator σrel, the “now” oper-
ator νrel, the unbounded start delay operator b cω, the (free) merge operator ‖, and the
left merge operator ‖ .

Definition 3.6.2 (Axioms of PAdrt)
The process algebra PAdrt is axiomatized by the axioms of BPAdrt given in Definition 2.8.2
on page 54, Axioms DRTM1 and DRTM4 shown in Table 24 on page 69, Axiom DRTM6
shown in Table 25 on page 70, and finally Axioms DRTM2ID–DRTM3ID, DRTM5ID, and
DRTMID1–DRTMID2 shown in Table 34: PAdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 +
DRTSID + DCS1–DCS4 + DCSID + ATS + USD + DRTM1 + DRTM2ID–DRTM3ID + DRTM4 +
DRTM5ID + DRTM6 + DRTMID1–DRTMID2.

a ‖ (x+ δ) = a · (x+ δ) DRTM2ID

a · x ‖ (y+ δ) = a · (x ‖ (y+ δ)) DRTM3ID

σrel(x) ‖ (νrel(y) + δ) = δ DRTM5ID

x ‖ δ̇ = δ̇ DRTMID1

δ̇ ‖ x = δ̇ DRTMID2

Table 34: Additional axioms for PAdrt.

Definition 3.6.3 (Semantics of PAdrt)
The semantics of PAdrt are given by the term deduction system T(PAdrt) induced by the
deduction rules for BPAdrt given in Definition 2.8.4 on page 54 and the deduction rules
for the (free) merge with immediate deadlock shown in Table 35 on the next page.
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x a→ x′, ¬ID(y)
x ‖ y a→ x′ ‖ y

y a→ y′, ¬ID(x)
x ‖ y a→ x ‖ y′

x a→ x′, ¬ID(y)
x ‖ y a→ x′ ‖ y

x a→√, ¬ID(y)
x ‖ y a→ y

y a→√, ¬ID(x)
x ‖ y a→ x

x a→√, ¬ID(y)
x ‖ y a→ y

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

ID(x)
ID(x ‖ y)

ID(y)
ID(x ‖ y)

ID(x)
ID(x ‖ y)

ID(y)
ID(x ‖ y)

Table 35: Deduction rules for the (free) merge with immediate deadlock.

Definition 3.6.4 (Bisimulation and Bisimulation Model for PAdrt)
Bisimulation for PAdrt and the corresponding bisimulation model are defined in the same
way as for BPA−drt and BPA respectively. Replace “BPA−drt” by “PAdrt” in Definition 2.7.7 on
page 46 and “BPA” by “PAdrt” in Definition 2.2.11 on page 8.

Definition 3.6.5 (Basic Terms of PAdrt)
If we speak of basic terms in the context of PAdrt, we mean (σ,δ,δ, δ̇)-basic terms as
defined in Definition 2.8.7 on page 54.

Definition 3.6.6 (Number of Symbols of a PAdrt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = n(a) = 1,

(iii). for closed PAdrt terms x and y, we define n(x+y) = n(x·y) = n(x ‖ y) = n(x ‖ y) =
n(x) + n(y) + 1,

(iv). for a closed PAdrt term x, we define n(σrel(x)) = n(νrel(x)) = n(bxcω) = n(x) + 1.

Proposition 3.6.7 (Properties of PA+drt)
For PAdrt terms x and y, and any a ∈ Aδ, we have the following equalities:

(i). PA+drt ` bacω= a

(ii). PA+drt ` bx · ycω= bxcω· y

(iii). PA+drt ` bx+ ycω= bxcω+ bycω

(iv). PA+drt ` bσrel(x)cω= δ
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(v). PA+drt ` bδ̇cω= δ
(vi). PA+drt ` a ‖ bxcω= a · bxcω

(vii). PA+drt ` a · x ‖ bycω= a · (x ‖ bycω)
(viii). PAdrt ` νrel(a) = a

(ix). PAdrt ` bxcω+ δ = bxcω

Proof The proofs for equality (i)–(v) and (viii)–(ix) given in Proposition 2.8.11 on
page 55, with respect to BPAdrt, remain valid in the setting of PAdrt, as can be easily
checked.

Equality (vi) and (vii) do not appear in Proposition 2.8.11. Consider the following com-
putation for equality (vi):

PAdrt ` a ‖ bxcω= bacω ‖ bxcω
= (νrel(a) + σrel(bacω)) ‖ bxcω
= (a+σrel(a)) ‖ bxcω
= a ‖ bxcω+σrel(a) ‖ bxcω
= a ‖ (bxcω+ δ) + σrel(a) ‖ (νrel(x) + σrel(bxcω))
= a · (bxcω+ δ) + σrel(a ‖ bxcω)
= νrel(a) · bxcω+ σrel(a ‖ bxcω)
= νrel(a · bxcω) + σrel(a ‖ bxcω)

Using RSP(USD) we obtain:

PA+drt ` a ‖ bxcω=
⌊
a · bxcω⌋ω= bacω· bxcω= a · bxcω

Finally, consider the following computation for equality (vii):

PAdrt ` a · x ‖ bycω= bacω· x ‖ bycω
= (νrel(a) + σrel(bacω)) · x ‖ bycω
= (a+ σrel(a)) · x ‖ bycω
= (a · x+σrel(a · x)) ‖ bycω
= a · x ‖ bycω+ σrel(a · x) ‖ bycω
= a · x ‖ (bycω+ δ) + σrel(a · x) ‖ (νrel(y) +σrel(bycω))
= a · (x ‖ (bycω+ δ)) + σrel(a · x ‖ bycω)
= νrel(a) · (x ‖ bycω) + σrel(a · x ‖ bycω)
= νrel(a · (x ‖ bycω)) + σrel(a · x ‖ bycω)

Using RSP(USD) we obtain:

PA+drt ` a · x ‖ bycω=
⌊
a · (x ‖ bycω)⌋ω= bacω· (x ‖ bycω) = a · (x ‖ bycω)

�

Theorem 3.6.8 (Elimination for PA+drt)
Let t be a closed PAdrt term. Then there is a closed BPAdrt term s such that PA+drt ` t = s.
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Proof Let t be a closed PAdrt term. The theorem is proven by induction on n(t) and
case distinction on the general structure of t.

(i). t ≡ δ̇. Then t is a closed BPAdrt term.

(ii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iv). t ≡ t1 + t2 for closed PAdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that PA+drt ` t1 = s1 and PA+drt ` t2 = s2. But then also PA+drt `
t1 + t2 = s1 + s2 and s1 + s2 is a closed BPAdrt term.

(v). t ≡ t1 · t2 for closed PAdrt terms t1 and t2. This case is treated analogously to case
(ii).

(vi). t ≡ σrel(t1) for a closed PAdrt term t1. This case is treated analogously to case (ii).

(vii). t ≡ νrel(t1) for a closed PAdrt term t1. This case is treated analogously to case (ii).

(viii). t ≡ bt1cω for a closed PAdrt term t1. This case is treated analogously to case (ii).

(ix). t ≡ t1 ‖ t2 for closed PAdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that PA+drt ` t1 = s1 and PA+drt ` t2 = s2. By Theorem 2.8.16, the
elimination theorem for BPAdrt, there are basic terms r1 and r2 such that BPA+drt `
s1 = r1 and BPA+drt ` s2 = r2. But then also, PA+drt ` t1 = r1, PA+drt ` t2 = r2, and
PA+drt ` t1 ‖ t2 = r1 ‖ r2. We proceed by induction on the structure of basic terms,
and distinguish all possible cases for basic term r1:

(a) r1 ≡ δ̇. Then PA+drt ` t1 ‖ t2 = r1 ‖ r2 = δ̇ ‖ r2 = δ̇, and δ̇ is a closed BPAdrt

term.

(b) r1 ≡ a for some a ∈ Aδ. Using Lemma 2.8.14 we distinguish two cases:

i. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = r2 + δ. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = a ‖ (r2 + δ) =
a · (r2 + δ) = a · r2, and a · r2 is a closed BPAdrt term.

(c) r1 ≡ a for some a ∈ Aδ. Using Lemma 2.8.13 we distinguish four cases:

i. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = νrel(r2) + δ. Then we have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω ‖ r2

= (νrel(a) + σrel(bacω)) ‖ r2

= (a+ σrel(a)) ‖ r2

= a ‖ r2 + σrel(a) ‖ r2

= a ‖ (νrel(r2) + δ) + σrel(a) ‖ (νrel(r2) + δ)
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= a · (νrel(r2) + δ) + δ
= a · r2 + δ
= a · r2 + δ · r2

= (a+ δ) · r2

= a · r2,

and a · r2 is a closed BPAdrt term.
iii. r2 = br2cω. Then, using Proposition 3.6.7(vi), we have: PA+drt ` t1 ‖ t2 =
r1 ‖ r2 = a ‖ br2cω= a · br2cω= a · r2, and a · r2 is a closed BPAdrt term.

iv. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2 such that n(r ′2) < n(r2). Then
we have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω ‖ r2

= (νrel(a) + σrel(bacω)) ‖ r2

= (a+ σrel(a)) ‖ r2

= a ‖ r2 + σrel(a) ‖ r2

= a ‖ (νrel(r2) + σrel(r ′2)) +
σrel(a) ‖ (νrel(r2) + σrel(r ′2))

= a ‖ (νrel(r2) + σrel(r ′2) + δ) + σrel(a ‖ r ′2)
= a · (νrel(r2) + σrel(r ′2) + δ) + σrel(a ‖ r ′2)
= a · (νrel(r2) + σrel(r ′2)) +σrel(a ‖ r ′2)
= a · r2 + σrel(a ‖ r ′2).

By the induction hypothesis there exists a closed BPAdrt term p such that
PA+drt ` a ‖ r ′2 = p. Then, PA+drt ` t1 ‖ t2 = a · r2 + σrel(a ‖ r ′2) = a · r2 +
σrel(p), and a · r2 + σrel(p) is a closed BPAdrt term.

(d) r1 ≡ a · r ′1 for some a ∈ Aδ and basic term r ′1. Using Lemma 2.8.14 we distin-
guish two cases:

i. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = r2 + δ. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = a · r ′1 ‖ (r2 + δ) =
a·(r ′1 ‖ (r2+δ)) = a·(r ′1 ‖ r2). By the induction hypothesis there exists a
closed BPAdrt term p such that PA+drt ` r ′1 ‖ r2 = p. Then, PA+drt ` t1 ‖ t2 =
a · (r ′1 ‖ r2) = a · p, and a · p is a closed BPAdrt term.

(e) r1 ≡ a · r ′1 for some a ∈ Aδ and basic term r ′1. Using Lemma 2.8.13 we distin-
guish four cases:

i. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = νrel(r2) + δ. Then we have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a · r ′1 ‖ r2
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= bacω· r ′1 ‖ r2

= (νrel(a) +σrel(bacω)) · r ′1 ‖ r2

= (a+ σrel(a)) · r ′1 ‖ r2

= (a · r ′1 + σrel(a) · r ′1) ‖ r2

= (a · r ′1 + σrel(a · r ′1)) ‖ r2

= a · r ′1 ‖ r2 + σrel(a · r ′1) ‖ r2

= a · r ′1 ‖ (νrel(r2) + δ) + σrel(a · r ′1) ‖ (νrel(r2) + δ)
= a · (r ′1 ‖ (νrel(r2) + δ)) + δ
= a · (r ′1 ‖ r2) + δ
= a · (r ′1 ‖ r2) + δ · (r ′1 ‖ r2)
= (a+ δ) · (r ′1 ‖ r2)
= a · (r ′1 ‖ r2).

By the induction hypothesis there exists a closed BPAdrt term p such that
PA+drt ` r ′1 ‖ r2 = p. Then, PA+drt ` t1 ‖ t2 = a · (r ′1 ‖ r2) = a · p, and a · p
is a closed BPAdrt term.

iii. r2 = br2cω. Then, using Proposition 3.6.7(vii), we have: PA+drt ` t1 ‖ t2 =
r1 ‖ r2 = a · r ′1 ‖ br2cω= a · (r ′1 ‖ br2cω) = a · (r ′1 ‖ r2). By the induction
hypothesis there exists a closed BPAdrt term p such that PA+drt ` r ′1 ‖ r2 = p.
Then, PA+drt ` t1 ‖ t2 = a · (r ′1 ‖ r2) = a · p, and a · p is a closed BPAdrt

term.

iv. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2 such that n(r ′2) < n(r2). Then
we have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a · r ′1 ‖ r2

= bacω· r ′1 ‖ r2

= (νrel(a) + σrel(bacω)) · r ′1 ‖ r2

= (a+ σrel(a)) · r ′1 ‖ r2

= (a · r ′1 + σrel(a) · r ′1) ‖ r2

= (a · r ′1 + σrel(a · r ′1)) ‖ r2

= a · r ′1 ‖ r2 +σrel(a · r ′1) ‖ r2

= a · r ′1 ‖ (νrel(r2) + σrel(r ′2)) +
σrel(a · r ′1) ‖ (νrel(r2) + σrel(r ′2))

= a · r ′1 ‖ (νrel(r2) + σrel(r ′2) + δ) +
σrel(a · r ′1) ‖ (νrel(r2) + σrel(r ′2))

= a · (r ′1 ‖ (νrel(r2) + σrel(r ′2) + δ)) +σrel(a · r ′1 ‖ r ′2)
= a · (r ′1 ‖ (νrel(r2) + σrel(r ′2)) + σrel(r1 ‖ r ′2)
= a · (r ′1 ‖ r2) + σrel(r1 ‖ r ′2).

By the induction hypothesis there exist closed BPAdrt terms p1 and p2 such
that PA+drt ` r ′1 ‖ r2 = p1 and PA+drt ` r1 ‖ r ′2 = p2. Then, PA+drt ` t1 ‖ t2 =
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a · (r ′1 ‖ r2) + σrel(r1 ‖ r ′2) = a · p1 + σrel(p2), and a · p1 + σrel(p2) is a
closed BPAdrt term.

(f) r1 ≡ r ′1 + r ′′1 for basic terms r ′1 and r ′′1 . Then PA+drt ` t1 ‖ t2 = r1 ‖ r2 =
(r ′1+r ′′1 ) ‖ r2 = r ′1 ‖ r2+r ′′1 ‖ r2. By induction there exist closed BPAdrt terms
p1 and p2 such that PA+drt ` r ′1 ‖ r2 = p1 and PA+drt ` r ′′1 ‖ r2 = p2. Then also
PA+drt ` t1 ‖ t2 = r ′1 ‖ r2 + r ′′1 ‖ r2 = p1 + p2, and p1 + p2 is a closed BPAdrt

term.

(g) r1 ≡ σrel(r ′1) for a basic term r ′1. Using Lemma 2.8.13 we distinguish four
cases:

i. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = a ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = νrel(r2) + δ. Then PA+drt ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ (νrel(r2) +
δ) = δ, and δ is a closed BPAdrt term.

iii. r2 = br2cω. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ br2cω=
σrel(r ′1) ‖ (νrel(r2) + σrel(br2cω) = σrel(r ′1 ‖ br2cω) = σrel(r ′1 ‖ r2). By
the induction hypothesis there exists a closed BPAdrt term p such that
PA+drt ` r ′1 ‖ r2 = p. Then, PA+drt ` t1 ‖ t2 = σrel(r ′1 ‖ r2) = σrel(p),
and σrel(p) is a closed BPAdrt term.

iv. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2 such that n(r ′2) < n(r2). Then
we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ (νrel(r2) + σrel(r ′2)) =
σrel(r ′1 ‖ r ′2). By the induction hypothesis there is a closed BPAdrt term p
such that PA+drt ` r ′1 ‖ r ′2 = p. Then, PA+drt ` t1 ‖ t2 = σrel(r ′1 ‖ r ′2) =
σrel(p), and σrel(p) is a closed BPAdrt term.

(x). t ≡ t1 ‖ t2 for closed PAdrt terms t1 and t2. Then PA+drt ` t1 ‖ t2 = t1 ‖ t2 + t2 ‖ t1.
By (ix) there are closed BPAdrt terms p1 and p2 such that PA+drt ` t1 ‖ t2 = p1 and
PA+drt ` t2 ‖ t1 = p2. But then also PA+drt ` t1 ‖ t2 = t1 ‖ t2 + t2 ‖ t1 = p1 + p2, and
p1 + p2 is a closed BPAdrt term.

�

Corollary 3.6.9 (Elimination for PA+drt)
Let t be a closed PAdrt term. Then there is a basic term s such that PA+drt ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for PA+drt (see Theorem 3.6.8),

(ii). the elimination theorem for BPA+drt (see Theorem 2.8.16),

(iii). the fact that all axioms of BPA+drt are also contained in PA+drt.

�

Remark 3.6.10 (Elimination for PAdrt)
Elimination for a somewhat different version of PAdrt is also claimed (without proof) in
Section 3.9 of [10].

Theorem 3.6.11 (Soundness of PA+drt)
The set of closed PAdrt terms modulo bisimulation equivalence is a model of PA+drt.
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Proof We only prove soundness for the axioms of PAdrt that have not been treated
in earlier soundness proofs. Note that to extend these proofs to PAdrt, we have to check
that the bisimulations given in previous soundness proofs respect the ID predicate (as
required by transfer condition (iv.) in Definition 2.7.7 on page 46). However, as the fact
that they do can be easily checked, we will not give details.

Axiom DRTM2ID Take the relation:

R = {(s, s), (a ‖ (s + δ), a · (s + δ))|s ∈ C(PAdrt)}

We look at the transitions of both sides at the same time. The only transition of the
left-hand side is a ‖ (s + δ) a→ s+ δ, and the only transition of the right-hand side
is a · (s+ δ) a→ s + δ, and note that (s + δ, s + δ) ∈ R. Finally, neither side satisfies
the ID predicate: ¬ID(a ‖ (s+δ)) and ¬ID(a · (s+δ)) (note that ¬ID(s+δ) even
if ID(s)).

Axiom DRTM3ID Take the relation:

R = {(s, s), (a · s ‖ (t + δ), a · (s ‖ (t + δ)))|s, t ∈ C(PAdrt)}

We look at the transitions of both sides at the same time. The only transition of the
left-hand side is a·s ‖ (t+δ) a→ s ‖ (t+δ), and the only transition of the right-hand
side is a·(s ‖ (t+δ)) a→ s ‖ (t+δ), and note that (s ‖ (t+δ), s ‖ (t+δ)) ∈ R. Finally,
neither side satisfies the ID predicate: ¬ID(a·s ‖ (t+δ)) and¬ID(a·(s ‖ (t+δ)).

Axiom DRTM5ID Take the relation:

R = {(σrel(s) ‖ (νrel(t) + δ),δ)|s, t ∈ C(PAdrt)}

We look at the transitions of both sides at the same time. Observe that there are
no transitions possible on the left-hand side: σrel(s) ‖ (νrel(t)+δ)3 . Also for the
right-hand side there are no transitions possible: δ3 . Finally, neither side satisfies
the ID predicate: ¬ID(σrel(s) ‖ (νrel(t)+δ)) and¬ID(δ) (note that¬ID(νrel(t)+δ)
even if ID(t)).

Axiom DRTMID1 Take the relation:

R = {(s ‖ δ̇, δ̇)|s ∈ C(PAdrt)}

We look at the transitions of both sides at the same time. Observe that there are
no transitions possible on the left-hand side: s ‖ δ̇3 . Also for the right-hand side
there are no transitions possible: δ̇3 . Finally, both sides satisfy the ID predicate:
ID(s ‖ δ̇) and ID(δ̇) (note that ID(s ‖ δ̇) even if ¬ID(s)).

Axiom DRTMID2 Take the relation:

R = {(δ̇, s ‖ δ̇)|s ∈ C(PAdrt)}

This case is treated symmetrically to the previous case.

�

107



Remark 3.6.12 (Soundness of PAdrt)
Soundness of a somewhat different version of PAdrt is also claimed (without proof) in
Section 3.9 of [10].

Theorem 3.6.13 (Conservativity of PA+drt with respect to BPA+drt)
The equational specification PA+drt is a conservative extension of the equational specifica-
tion BPA+drt.

Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA+drt is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPAdrt) (see Theorem 2.8.22),

(iii). PA+drt is a sound axiomatization with respect to the bisimulation equivalence model
induced by T(PAdrt) (see Theorem 3.6.11),

(iv). T(PAdrt) is an operationally conservative extension of T(BPAdrt).

And in order for T(PAdrt) to be an operationally conservative extension of T(BPAdrt) we
must verify the following conditions:

(i). T(BPAdrt) is a pure, well-founded term deduction system in path format,

(ii). T(PAdrt) is a term deduction system in path format,

(iii). T(BPAdrt) ⊕ T(PAdrt) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �

Theorem 3.6.14 (Completeness of PA+drt)
The equational specification PA+drt is a complete axiomatization of the set of closed PAdrt

terms modulo bisimulation equivalence.

Proof By Verhoef’s General Completeness Theorem (see [25], or Theorem 2.4.26 of
[13]) this follows immediately from:

(i). PA+drt has the elimination property for BPAdrt (see Theorem 3.6.8),

(ii). PA+drt is a conservative extension of BPA+drt (see Theorem 3.6.13).

�

Remark 3.6.15 (Completeness of PAdrt)
Completeness of a somewhat different version of PAdrt is also claimed (without proof) in
Section 3.9 of [10].

Definition 3.6.16 (Axioms for the Ultimate Start Delay and Merge)
We define Axioms USD6 and USD7 for the ultimate start delay as given in Table 36 on the
next page. Note that they precisely correspond to the equalities of Proposition 3.6.7(vi)
and (vii).
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a ‖ bxcω= a · bxcω USD6

a · x ‖ bycω= a · (x ‖ bycω) USD7

Table 36: Additional axioms for the ultimate start delay and merge.

Corollary 3.6.17 (Soundness of PAdrt + USD1–USD7)
The set of closed PAdrt terms modulo bisimulation equivalence is a model of PAdrt + USD1–
USD7.

Proof This now follows directly from the soundness of PA+drt (see Theorem 3.6.11
on page 106) and the fact that Axioms USD1–USD7 are derivable in PA+drt (see Proposi-
tion 3.6.7 on page 101). �

Corollary 3.6.18 (Completeness of PAdrt + USD1–USD7)
If we add Axioms USD1–USD4 of Table 18 on page 45, Axiom USD5 of Table 23 on page 68,
and Axioms USD6–USD7 of Table 36 to PAdrt, we again have a complete axiomatization of
the set of closed PAdrt terms modulo bisimulation equivalence.

Proof Careful inspection of the dependencies between the proofs in this section re-
veals that the proof of Theorem 3.6.14 only relies upon RSP(USD) to ensure Proposition
3.6.7(i)–(vii). So, we obviously do not need RSP(USD) anymore if we add the correspond-
ing Axioms USD1–USD7. Note that in this way we get a purely equational axiomatization
(i.e. without conditional axioms or principles). �

3.7 Soundness and Completeness of ACP+drt

Definition 3.7.1 (Signature of ACPdrt)
The signature of ACPdrt consists of the undelayable atomic actions {a|a ∈ A}, the de-
layable atomic actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable
deadlock constant δ, the immediate deadlock constant δ̇, the alternative composition oper-
ator +, the sequential composition operator ·, the time unit delay operator σrel, the “now”
operator νrel, the unbounded start delay operator b cω, the (communicating) merge oper-
ator ‖, the left merge operator ‖ , and the communication merge operator | .

Definition 3.7.2 (Axioms of ACPdrt)
The process algebra ACPdrt is axiomatized by the axioms of PAdrt given in Definition 3.6.2
on page 100 minus Axiom DRTM1, plus Axioms DRTCM1–DRTCM5, DRTCM12–13, and
DRTCF1–DRTCF2 shown in Table 29 on page 84, Axioms DRTCM6–DRTCM7 shown in Ta-
ble 30 on page 85, and Axioms DRTMID3–DRTMID4 and DRTCM6ID–DRTCM7ID shown in
Table 37 on the following page: ACPdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID +
DCS1–DCS4 + DCSID + ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF1–DRTCF2
+ DRTMID1–DRTMID4.
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σrel(x) | (νrel(y) + δ) = δ DRTCM6ID

(νrel(x) + δ) |σrel(y) = δ DRTCM7ID

x | δ̇ = δ̇ DRTMID3

δ̇ | x = δ̇ DRTMID4

Table 37: Additional axioms for ACPdrt.

Definition 3.7.3 (Semantics of ACPdrt)
The semantics of ACPdrt are given by the term deduction system T(ACPdrt) induced by
the deduction rules for PAdrt given in Definition 3.6.3 on page 100, the deduction rules for
the communication merge shown in Table 31 on page 85, and the additional deduction
rules for ACPdrt shown in Table 38.

ID(x)
ID(x | y)

ID(y)
ID(x | y)

Table 38: Additional deduction rules for ACPdrt.

Definition 3.7.4 (Bisimulation and Bisimulation Model for ACPdrt)
Bisimulation for ACPdrt and the corresponding bisimulation model are defined in the
same way as for BPA−drt and BPA respectively. Replace “BPA−drt” by “ACPdrt” in Defini-
tion 2.7.7 on page 46 and “BPA” by “ACPdrt” in Definition 2.2.11 on page 8.

Definition 3.7.5 (Basic Terms of ACPdrt)
If we speak of basic terms in the context of ACPdrt, we mean (σ,δ,δ, δ̇)-basic terms as
defined in Definition 2.8.7 on page 54.

Definition 3.7.6 (Number of Symbols of an ACPdrt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = n(a) = 1,

(iii). for closed ACPdrt terms x and y, we define n(x + y) = n(x · y) = n(x ‖ y) =
n(x ‖ y) = n(x | y) = n(x) + n(y) + 1,

(iv). for a closed ACPdrt term x, we define n(σrel(x)) = n(νrel(x)) = n(bxcω) = n(x)+1.

Proposition 3.7.7 (Properties of ACP+drt, Part I)
For ACPdrt terms x and y, and any a ∈ Aδ, we have the following equalities:
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(i). ACP+drt ` bacω= a
(ii). ACP+drt ` bx · ycω= bxcω· y
(iii). ACP+drt ` bx+ ycω= bxcω+ bycω

(iv). ACP+drt ` bσrel(x)cω= δ
(v). ACP+drt ` bδ̇cω= δ

(vi). ACP+drt ` a ‖ bxcω= a · bxcω

(vii). ACP+drt ` a · x ‖ bycω= a · (x ‖ bycω)

(viii). ACPdrt ` νrel(a) = a
(ix). ACPdrt ` bxcω+ δ = bxcω

Proof The proofs for these equalities given in Proposition 3.6.7 on page 101, with
respect to PAdrt, remain valid in the setting of ACPdrt, as can be easily checked. �

Proposition 3.7.8 (Properties of ACP+drt, Part II)
For ACPdrt terms x and y and any a,b, c ∈ Aδ, we have the following equalities:

(i). ACP+drt ` a | b = c if γ(a, b) = c ≠ δ

(ii). ACP+drt ` a | b = δ if γ(a,b) = δ
(iii). ACP+drt ` a | b · x = (a | b) · x

(iv). ACP+drt ` a · x | b = (a | b) · x
(v). ACP+drt ` a · x | b · y = (a | b) · (x ‖ y)

Proof

(i). Consider the following computation:

ACPdrt ` a | b = bacω| bbcω
= (νrel(a) + σrel(bacω)) | (νrel(b) +σrel(bbcω))
= (a+ σrel(a)) | (b+ σrel(b))
= a | b+ a | σrel(b) +σrel(a) | b +σrel(a) | σrel(b)
= a | b+ νrel(a) |σrel(b) + σrel(a) | νrel(b) + σrel(a) |σrel(b)
= c + δ+ δ+ σrel(a | b)
= c +σrel(a | b)
= νrel(c) + σrel(a | b)

Using RSP(USD), we obtain:

ACP+drt ` a | b = bccω= c

(ii). This case is treated like the previous one, but with c replaced by δ.
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(iii). Consider the following computation:

ACPdrt ` a | b · x = bacω| bbcω· x
= (νrel(a) +σrel(bacω)) | (νrel(b) + σrel(bbcω)) · x
= (a+ σrel(a)) | (b+ σrel(b)) · x
= (a+ σrel(a)) | (b · x+σrel(b) · x)
= a | b · x+ a | σrel(b) · x+
σrel(a) | b · x+σrel(a) | σrel(b) · x

= a | b · x+ νrel(a) |σrel(b) · x+
σrel(a) | νrel(b) · x+ σrel(a) | σrel(b) · x

= a | b · x+ νrel(a) |σrel(b · x) +
σrel(a) | νrel(b · x) + σrel(a) | σrel(b · x)

= γ(a, b) · x+ δ+ δ+ σrel(a | b · x)
= γ(a, b) · x+ σrel(a | b · x)
= νrel(γ(a,b)) · x+ σrel(a | b · x)
= νrel(γ(a,b) · x) + σrel(a | b · x)

Using RSP(USD), we obtain:

ACP+drt ` a | b · x = bγ(a,b) · xcω= bγ(a, b)cω· x = γ(a, b) · x
= (a | b) · x

(iv). This case is treated symmetrically to the previous case.

(v). Consider the following computation:

ACPdrt ` a · x | b · y = bacω· x | bbcω· y
= (νrel(a) +σrel(bacω)) · x | (νrel(b) +σrel(bbcω)) · y
= (a+ σrel(a)) · x | (b +σrel(b)) · y
= (a · x+ σrel(a) · x) | (b · y + σrel(b) · y)
= a · x | b · y + a · x |σrel(b) · y +
σrel(a) · x | b · y + σrel(a) · x | σrel(b) · y

= a · x | b · y + νrel(a) · x |σrel(b) · y +
σrel(a) · x | νrel(b) · y + σrel(a) · x |σrel(b) · y

= a · x | b · y + νrel(a · x) |σrel(b · y) +
σrel(a · x) | νrel(b · y) + σrel(a · x) |σrel(b · y)

= γ(a, b) · (x ‖ y) + δ+ δ+ σrel(a · x | b · y)
= γ(a, b) · (x ‖ y) +σrel(a · x | b · y)
= νrel(γ(a,b)) · (x ‖ y) + σrel(a · x | b · y)
= νrel(γ(a,b) · (x ‖ y)) + σrel(a · x | b · y)
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Using RSP(USD), we obtain:

ACP+drt ` a · x | b · y = bγ(a, b) · (x ‖ y)cω
= bγ(a, b)cω· (x ‖ y)
= γ(a, b) · (x ‖ y)
= (a | b) · (x ‖ y)

�

Remark 3.7.9 (Properties of ACP+drt, Part II)
Note that the equalities of Proposition 3.7.8 on page 111 are in a sense the “delayable
reformulations” of Axioms DRTCF1–DRTCF2 and DRTCM2–DRTCM4 for the communi-
cation merge | . Such reformulations are however not possible for the axioms for the left
merge ‖ . Take for example DRTM2ID; although we do have:

ACP+drt ` a ‖ (x+ δ) = a · (x+ δ)
the “delayable” reformulation does not hold:

ACP+drt 6` a ‖ (x+ δ) = a · (x+ δ)
as can be seen by instantiating xwith any x such that x σ3 . In that case, namely, a·(x+δ)
can delay, while a ‖ (x+ δ) cannot, because x cannot.

Proposition 3.7.10 (Properties of ACPdrt, Part III)
For ACPdrt terms x and y, and any a,b ∈ Aδ, we have the following equalities:

(i). ACPdrt ` a | b = a | b
(ii). ACPdrt ` a | b = a | b
(iii). ACPdrt ` a | b · x = (a | b) · x
(iv). ACPdrt ` a · x | b = (a | b) · x
(v). ACPdrt ` a | b · x = (a | b) · x
(vi). ACPdrt ` a · x | b = (a | b) · x
(vii). ACPdrt ` a · x | b · y = (a | b) · (x ‖ y)
(viii). ACPdrt ` a · x | b · y = (a | b) · (x ‖ y)
Proof

(i). Consider the following computation:

ACPdrt ` a | b = a | bbcω
= a | (νrel(b) + σrel(bbcω)
= a | (b+ σrel(b))
= a | b + a | σrel(b)
= a | b + νrel(a) |σrel(b)
= a | b + δ
= a | b
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(ii). This case is treated symmetrically to the previous case.

(iii). Consider the following computation:

ACPdrt ` a | b · x = a | bbcω· x
= a | (νrel(b) + σrel(bbcω) · x
= a | (b+ σrel(b)) · x
= a | (b · x+ σrel(b) · x)
= a | b · x+ a | σrel(b) · x
= a | b · x+ νrel(a) |σrel(b · x)
= a | b · x+ δ
= a | b · x
= (a | b) · x

(iv). This case is treated symmetrically to the previous case.

(v). Consider the following computation:

ACPdrt ` a | b · x = bacω| b · x
= (νrel(a) +σrel(bacω) | b · x
= (a+ σrel(a)) | b · x
= a | b · x+σrel(a) | b · x
= a | b · x+σrel(a) | νrel(b) · x
= a | b · x+σrel(a) | νrel(b · x)
= a | b · x+ δ
= a | b · x
= (a | b) · x

(vi). This case is treated symmetrically to the previous case.

(vii). Consider the following computation:

ACPdrt ` a · x | b · y = a · x | bbcω· y
= a · x | (νrel(b) + σrel(bbcω)) · y
= a · x | (b + σrel(b)) · y
= a · x | (b · y +σrel(b) · y)
= a · x | b · y + a · x |σrel(b) · y
= a · x | b · y + νrel(a) · x |σrel(b) · y
= a · x | b · y + νrel(a · x) |σrel(b · y)
= a · x | b · y + δ
= a · x | b · y
= (a | b) · (x ‖ y)

(viii). This case is treated symmetrically to the previous case.
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Theorem 3.7.11 (Elimination for ACP+drt)
Let t be a closed ACPdrt term. Then there is closed BPAdrt term s such that ACP+drt ` t = s.
Proof Let t be a closed ACPdrt term. The theorem is proven by induction on n(t) and
case distinction on the general structure of t.

(i). t ≡ δ̇. Then t is a closed BPAdrt term.

(ii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iv). t ≡ t1 + t2 for closed ACPdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that ACP+drt ` t1 = s1 and ACP+drt ` t2 = s2. But then also
ACP+drt ` t1 + t2 = s1 + s2 and s1 + s2 is a closed BPAdrt term.

(v). t ≡ t1 · t2 for closed ACPdrt terms t1 and t2. This case is treated analogously to case
(ii).

(vi). t ≡ σrel(t1) for a closed ACPdrt term t1. This case is treated analogously to case (ii).

(vii). t ≡ νrel(t1) for a closed ACPdrt term t1. This case is treated analogously to case (ii).

(viii). t ≡ bt1cω for a closed ACPdrt term t1. This case is treated analogously to case (ii).

(ix). t ≡ t1 ‖ t2 for closed ACPdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that ACP+drt ` t1 = s1 and ACP+drt ` t2 = s2. By Theorem
2.8.16, the elimination theorem for BPAdrt, there are basic terms r1 and r2 such that
BPA+drt ` s1 = r1 and BPA+drt ` s2 = r2. But then also, ACP+drt ` t1 = r1, ACP+drt `
t2 = r2, and ACP+drt ` t1 ‖ t2 = r1 ‖ r2. We proceed by induction on the structure
of basic terms, and distinguish all possible cases for basic term r1:

(a) r1 ≡ δ̇. Then ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = δ̇ ‖ r2 = δ̇, and δ̇ is a closed BPAdrt

term.

(b) r1 ≡ a for some a ∈ Aδ. Using Lemma 2.8.14 we distinguish two cases:

i. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = r2 + δ. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = a ‖ (r2 + δ) =
a · (r2 + δ) = a · r2, and a · r2 is a closed BPAdrt term.

(c) r1 ≡ a for some a ∈ Aδ. Using Lemma 2.8.13 we distinguish four cases:

i. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = νrel(r2) + δ. Then we have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω ‖ r2
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= (νrel(a) + σrel(bacω)) ‖ r2

= (a+ σrel(a)) ‖ r2

= a ‖ r2 + σrel(a) ‖ r2

= a ‖ (νrel(r2) + δ) + σrel(a) ‖ (νrel(r2) + δ)
= a · (νrel(r2) + δ) + δ
= a · r2 + δ
= a · r2 + δ · r2

= (a+ δ) · r2

= a · r2,

and a · r2 is a closed BPAdrt term.

iii. r2 = br2cω. Then, using Proposition 3.7.7(vi), we have: ACP+drt ` t1 ‖ t2 =
r1 ‖ r2 = a ‖ br2cω= a · br2cω= a · r2, and a · r2 is a closed BPAdrt term.

iv. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2 such that n(r ′2) < n(r2). Then
we have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω ‖ r2

= (νrel(a) + σrel(bacω)) ‖ r2

= (a+ σrel(a)) ‖ r2

= a ‖ r2 + σrel(a) ‖ r2

= a ‖ (νrel(r2) + σrel(r ′2)) +
σrel(a) ‖ (νrel(r2) + σrel(r ′2))

= a ‖ (νrel(r2) + σrel(r ′2) + δ) + σrel(a ‖ r ′2)
= a · (νrel(r2) + σrel(r ′2) + δ) + σrel(a ‖ r ′2)
= a · (νrel(r2) + σrel(r ′2)) +σrel(a ‖ r ′2)
= a · r2 + σrel(a ‖ r ′2).

By the induction hypothesis there exists a closed BPAdrt term p such that
ACP+drt ` a ‖ r ′2 = p. Then, ACP+drt ` t1 ‖ t2 = a · r2 + σrel(a ‖ r ′2) =
a · r2 + σrel(p), and a · r2 + σrel(p) is a closed BPAdrt term.

(d) r1 ≡ a · r ′1 for some a ∈ Aδ and basic term r ′1. Using Lemma 2.8.14 we distin-
guish two cases:

i. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = r2 + δ. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = a · r ′1 ‖ (r2 +
δ) = a · (r ′1 ‖ (r2 + δ)) = a · (r ′1 ‖ r2). By the induction hypothesis
there exists a closed BPAdrt term p such that ACP+drt ` r ′1 ‖ r2 = p. Then,
ACP+drt ` t1 ‖ t2 = a · (r ′1 ‖ r2) = a · p, and a · p is a closed BPAdrt term.

(e) r1 ≡ a · r ′1 for some a ∈ Aδ and basic term r ′1. Using Lemma 2.8.13 we distin-
guish four cases:
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i. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = νrel(r2) + δ. Then we have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a · r ′1 ‖ r2

= bacω· r ′1 ‖ r2

= (νrel(a) +σrel(bacω)) · r ′1 ‖ r2

= (a+ σrel(a)) · r ′1 ‖ r2

= (a · r ′1 + σrel(a) · r ′1) ‖ r2

= (a · r ′1 + σrel(a · r ′1)) ‖ r2

= a · r ′1 ‖ r2 + σrel(a · r ′1) ‖ r2

= a · r ′1 ‖ (νrel(r2) + δ) + σrel(a · r ′1) ‖ (νrel(r2) + δ)
= a · (r ′1 ‖ (νrel(r2) + δ)) + δ
= a · (r ′1 ‖ r2) + δ
= a · (r ′1 ‖ r2) + δ · (r ′1 ‖ r2)
= (a+ δ) · (r ′1 ‖ r2)
= a · (r ′1 ‖ r2).

By the induction hypothesis there exists a closed BPAdrt term p such that
ACP+drt ` r ′1 ‖ r2 = p. Then, ACP+drt ` t1 ‖ t2 = a · (r ′1 ‖ r2) = a · p, and
a · p is a closed BPAdrt term.

iii. r2 = br2cω. Then, using Proposition 3.7.7(vii), we have: ACP+drt ` t1 ‖ t2 =
r1 ‖ r2 = a · r ′1 ‖ br2cω= a · (r ′1 ‖ br2cω) = a · (r ′1 ‖ r2). By the induction
hypothesis there exists a closed BPAdrt term p such that ACP+drt ` r ′1 ‖ r2 =
p. Then, ACP+drt ` t1 ‖ t2 = a · (r ′1 ‖ r2) = a ·p, and a ·p is a closed BPAdrt

term.

iv. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2 such that n(r ′2) < n(r2). Then
we have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a · r ′1 ‖ r2

= bacω· r ′1 ‖ r2

= (νrel(a) + σrel(bacω)) · r ′1 ‖ r2

= (a+ σrel(a)) · r ′1 ‖ r2

= (a · r ′1 + σrel(a) · r ′1) ‖ r2

= (a · r ′1 + σrel(a · r ′1)) ‖ r2

= a · r ′1 ‖ r2 +σrel(a · r ′1) ‖ r2

= a · r ′1 ‖ (νrel(r2) + σrel(r ′2)) +
σrel(a · r ′1) ‖ (νrel(r2) + σrel(r ′2))

= a · r ′1 ‖ (νrel(r2) + σrel(r ′2) + δ) +
σrel(a · r ′1) ‖ (νrel(r2) + σrel(r ′2))
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= a · (r ′1 ‖ (νrel(r2) + σrel(r ′2) + δ)) +σrel(a · r ′1 ‖ r ′2)
= a · (r ′1 ‖ (νrel(r2) + σrel(r ′2)) + σrel(r1 ‖ r ′2)
= a · (r ′1 ‖ r2) + σrel(r1 ‖ r ′2).

By the induction hypothesis there exist closed BPAdrt terms p1 and p2 such
that ACP+drt ` r ′1 ‖ r2 = p1 and ACP+drt ` r1 ‖ r ′2 = p2. Then, ACP+drt `
t1 ‖ t2 = a·(r ′1 ‖ r2)+σrel(r1 ‖ r ′2) = a·p1+σrel(p2), and a·p1+σrel(p2)
is a closed BPAdrt term.

(f) r1 ≡ r ′1 + r ′′1 for basic terms r ′1 and r ′′1 . Then ACP+drt ` t1 ‖ t2 = r1 ‖ r2 =
(r ′1+r ′′1 ) ‖ r2 = r ′1 ‖ r2+r ′′1 ‖ r2. By induction there exist closed BPAdrt terms
p1 and p2 such that ACP+drt ` r ′1 ‖ r2 = p1 and ACP+drt ` r ′′1 ‖ r2 = p2. Then
also ACP+drt ` t1 ‖ t2 = r ′1 ‖ r2 + r ′′1 ‖ r2 = p1 + p2, and p1 + p2 is a closed
BPAdrt term.

(g) r1 ≡ σrel(r ′1) for a basic term r ′1. Using Lemma 2.8.13 we distinguish four
cases:

i. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = a ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

ii. r2 = νrel(r2) + δ. Then ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ (νrel(r2) +
δ) = δ, and δ is a closed BPAdrt term.

iii. r2 = br2cω. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ br2cω=
σrel(r ′1) ‖ (νrel(r2) + σrel(br2cω) = σrel(r ′1 ‖ br2cω) = σrel(r ′1 ‖ r2). By
the induction hypothesis there exists a closed BPAdrt term p such that
ACP+drt ` r ′1 ‖ r2 = p. Then, ACP+drt ` t1 ‖ t2 = σrel(r ′1 ‖ r2) = σrel(p),
and σrel(p) is a closed BPAdrt term.

iv. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2 such that n(r ′2) < n(r2). Then
we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = σrel(r ′1) ‖ (νrel(r2) + σrel(r ′2)) =
σrel(r ′1 ‖ r ′2). By the induction hypothesis there is a closed BPAdrt term p
such that ACP+drt ` r ′1 ‖ r ′2 = p. Then, ACP+drt ` t1 ‖ t2 = σrel(r ′1 ‖ r ′2) =
σrel(p), and σrel(p) is a closed BPAdrt term.

(x). t ≡ t1 | t2 for closed ACPdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that ACP+drt ` t1 = s1 and ACP+drt ` t2 = s2. By Theorem
2.8.16, the elimination theorem for BPAdrt, there are basic terms r1 and r2 such that
BPA+drt ` s1 = r1 and BPA+drt ` s2 = r2. But then also, ACP+drt ` t1 = r1, ACP+drt `
t2 = r2, and ACP+drt ` t1 | t2 = r1 | r2. We prove this case by simultaneous induction
on the structure of basic terms r1 and r2. We examine all possible cases (of which
there are in total 49, some of which can be treated simultaneously, reducing our
task to “just” 22 cases):

(a) r1 ≡ δ̇ and r2 is of arbitrary form. Then ACP+drt ` t1 | t2 = r1 | r2 = δ̇ | r2 = δ̇,
and δ̇ is a closed BPAdrt term.

(b) r1 is of arbitrary form and r2 ≡ δ̇. This case is treated symmetrically to the
previous case.

(c) r1 ≡ a and r2 ≡ b for some a, b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP+drt ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPAdrt term.
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(d) r1 ≡ a and r2 ≡ b for some a, b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP+drt ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPAdrt term.

(e) r1 ≡ a and r2 ≡ b for some a,b ∈ Aδ. This case is treated symmetrically to the
previous case.

(f) r1 ≡ a and r2 ≡ b for some a, b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP+drt ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPAdrt term.

(g) r1 ≡ a and r2 ≡ b ·r ′2 for some a,b ∈ Aδ and some basic term r ′2. Suppose that
γ(a, b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a |b · r ′2 = c · r ′2, and c · r ′2
is a closed BPAdrt term.

(h) r1 ≡ a · r ′1 and r2 ≡ b for some a,b ∈ Aδ and some basic term r ′1. This case is
treated symmetrically to the previous case.

(i) r1 ≡ a and r2 ≡ b ·r ′2 for some a,b ∈ Aδ and some basic term r ′2. Suppose that
γ(a, b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a |b · r ′2 = c · r ′2, and c · r ′2
is a closed BPAdrt term.

(j) r1 ≡ a · r ′1 and r2 ≡ b for some a,b ∈ Aδ and some basic term r ′1. This case is
treated symmetrically to the previous case.

(k) r1 ≡ a and r2 ≡ b ·r ′2 for some a,b ∈ Aδ and some basic term r ′2. Suppose that
γ(a, b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a |b · r ′2 = c · r ′2, and c · r ′2
is a closed BPAdrt term.

(l) r1 ≡ a · r ′1 and r2 ≡ b for some a,b ∈ Aδ and some basic term r ′1. This case is
treated symmetrically to the previous case.

(m) r1 ≡ a and r2 ≡ b ·r ′2 for some a,b ∈ Aδ and some basic term r ′2. Suppose that
γ(a, b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a |b · r ′2 = c · r ′2, and c · r ′2
is a closed BPAdrt term.

(n) r1 ≡ a · r ′1 and r2 ≡ b for some a,b ∈ Aδ and some basic term r ′1. This case is
treated symmetrically to the previous case.

(o) r1 ≡ a · r ′1 and r2 ≡ b · r ′2 for some a,b ∈ Aδ and some basic terms r ′1 and r ′2.
Suppose that γ(a,b) = c. Then we have ACP+drt ` t1 |t2 = r1 |r2 = a·r ′1 |b·r ′2 =
c · (r ′1 ‖ r ′2). By the induction hypothesis there exists a closed BPAdrt term s′
such that ACP+drt ` r ′1 ‖ r ′2 = s′. So ACP+drt ` t1 | t2 = c · (r ′1 ‖ r ′2) = c · s′, and
c · s′ is a closed BPAdrt term.

(p) r1 ≡ a · r ′1 and r2 ≡ b · r ′2 for some a,b ∈ Aδ and some basic terms r ′1 and r ′2.
Suppose that γ(a,b) = c. Then we have ACP+drt ` t1 |t2 = r1 |r2 = a·r ′1 |b·r ′2 =
c · (r ′1 ‖ r ′2). By the induction hypothesis there exists a closed BPAdrt term s′
such that ACP+drt ` r ′1 ‖ r ′2 = s′. So ACP+drt ` t1 | t2 = c · (r ′1 ‖ r ′2) = c · s′, and
c · s′ is a closed BPAdrt term.

(q) r1 ≡ a · r ′1 and r2 ≡ b · r ′2 for some a,b ∈ Aδ and some basic terms r ′1 and r ′2.
This case is treated symmetrically to the previous case.

(r) r1 ≡ a · r ′1 and r2 ≡ b · r ′2 for some a,b ∈ Aδ and some basic terms r ′1 and r ′2.
Suppose that γ(a,b) = c. Then we have ACP+drt ` t1 |t2 = r1 |r2 = a·r ′1 |b·r ′2 =
c · (r ′1 ‖ r ′2). By the induction hypothesis there exists a closed BPAdrt term s′
such that ACP+drt ` r ′1 ‖ r ′2 = s′. So ACP+drt ` t1 | t2 = c · (r ′1 ‖ r ′2) = c · s′, and
c · s′ is a closed BPAdrt term.
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(s) r1 ≡ r ′1 + r ′′1 for some basic terms r ′1 and r ′′1 , and r2 is of arbitrary form. Then
ACP+drt ` t1 | t2 = r1 | r2 = (r ′1 + r ′′1 ) | r2 = r ′1 | r2 + r ′′1 | r2. By the induction
hypothesis there exist closed BPAdrt terms p1 and p2 such that ACP+drt ` r ′1|r2 =
p1 and ACP+drt ` r ′′1 |r2 = p2. So, we have ACP+drt ` t1|t2 = r ′1|r2+r ′′1 |r2 = p1+p2,
and p1 + p2 is a closed BPAdrt term.

(t) r1 is of arbitrary form and r2 ≡ r ′2 + r ′′2 for some basic terms r ′2 and r ′′2 . This
case is treated symmetrically to the previous case.

(u) r1 ≡ σrel(r ′1) and r ′1 a basic term, and r2 is of arbitrary form. Using Lemma
2.8.13 we distinguish four cases:

i. r2 = δ̇. Then we have: ACP+drt ` t1 | t2 = r1 | r2 = σrel(r ′1) | δ̇ = δ̇, and δ̇ is
a closed BPAdrt term.

ii. r2 = νrel(r2)+δ. Then ACP+drt ` t1|t2 = r1|r2 = σrel(r ′1) |(νrel(r2)+δ) = δ,
and δ is a closed BPAdrt term.

iii. r2 = br2cω. Then we have: ACP+drt ` t1 | t2 = r1 | r2 = σrel(r ′1) | br2cω =
σrel(r ′1) | (νrel(r2) + σrel(br2cω) = σrel(r ′1 | br2cω) = σrel(r ′1 | r2). By the
induction hypothesis there is a closed BPAdrt term p such that ACP+drt `
r ′1 | r2 = p. But then also ACP+drt ` t1 | t2 = σrel(r ′1 | r2) = σrel(p), and
σrel(p) is a closed BPAdrt term.

iv. r2 = νrel(r2) + σrel(r ′2) for a basic term r ′2 such that n(r ′2) < n(r2). Then
we have: ACP+drt ` t1 | t2 = r1 | r2 = σrel(r ′1) | (νrel(r2) + σrel(r ′2)) =
σrel(r ′1) | σrel(r ′2) = σrel(r ′1 | r ′2). By the induction hypothesis there is
a closed BPAdrt term p such that ACP+drt ` r ′1 | r ′2 = p. But then also
ACP+drt ` t1 | t2 = σrel(r ′1 | r ′2) = σrel(p), and σrel(p) is a closed BPAdrt

term.

(v) r1 is of arbitrary form and r2 ≡ σrel(r ′2) and r ′2 a basic term. This case is treated
symmetrically to the previous case.

(xi). t ≡ t1 ‖ t2 for closed ACPdrt terms t1 and t2. Then ACP+drt ` t1 ‖ t2 = t1 ‖ t2 +
t2 ‖ t1+ t1 | t2. By (ix) and (x) there are closed BPAdrt terms p1, p2, and p3, such that
ACP+drt ` t1 ‖ t2 = p1, ACP+drt ` t2 ‖ t1 = p2, and ACP+drt ` t1 | t2 = p3. But then also
ACP+drt ` t1 ‖ t2 = t1 ‖ t2+ t2 ‖ t1+ t1 | t2 = p1+p2+p3, and p1+p2+p3 is a closed
BPAdrt term.

�

Corollary 3.7.12 (Elimination for ACP+drt)
Let t be a closed ACPdrt term. Then there is a basic term s such that ACP+drt ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for ACP+drt (see Theorem 3.7.11),

(ii). the elimination theorem for BPA+drt (see Theorem 2.8.16),

(iii). the fact that all axioms of BPA+drt are also contained in ACP+drt.

�
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Remark 3.7.13 (Elimination for ACPdrt)
Elimination for a somewhat different version of ACPdrt is also claimed (without proof) in
Section 3.10 of [10].

Theorem 3.7.14 (Soundness of ACP+drt)
The set of closed ACPdrt terms modulo bisimulation equivalence is a model of ACP+drt.

Proof We only prove soundness for the axioms of ACPdrt that have not been treated
in earlier soundness proofs. Note that to extend these proofs to ACPdrt, we have to check
that the bisimulations given in previous soundness proofs respect the ID predicate (as
required by transfer condition (iv.) in 2.7.7 on page 46). However, as the fact that they
do can be easily checked, we will not give details.

Axiom DRTCM6ID Take the relation:

R = {(σrel(s) | (νrel(t) + δ),δ)|s, t ∈ C(ACPdrt)}

We look at the transitions of both sides at the same time. Observe that there are
no transitions possible on the left-hand side: σrel(s) | (νrel(t) + δ)3 . Also for the
right-hand side there are no transitions possible: δ3 . Finally, neither side satisfies
the ID predicate: ¬ID(σrel(s) | (νrel(t) + δ)) and ¬ID(δ).

Axiom DRTCM7ID Take the relation:

R = {((νrel(s) + δ) |σrel(t),δ)|s, t ∈ C(ACPdrt)}

This case is treated symmetrically to the previous case.

Axiom DRTMID3 Take the relation:

R = {(s | δ̇, δ̇)|s ∈ C(ACPdrt)}

We look at the transitions of both sides at the same time. Observe that there are
no transitions possible on the left-hand side: s | δ̇3 . Also for the right-hand side
there are no transitions possible: δ̇3 . Finally, both sides satisfy the ID predicate:
ID(s | δ̇) and ID(δ̇).

Axiom DRTMID4 Take the relation:

R = {(δ̇ | s, δ̇)|s ∈ C(ACPdrt)}

This case is treated symmetrically to the previous case.

�

Remark 3.7.15 (Soundness of ACPdrt)
Soundness of a somewhat different version of ACPdrt is also claimed (without proof) in
Section 3.10 of [10].

Theorem 3.7.16 (Conservativity of ACP+drt with respect to BPA+drt)
The equational specification ACP+drt is a conservative extension of the equational specifica-
tion BPA+drt.
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Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA+drt is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPAdrt) (see Theorem 2.8.22),

(iii). ACP+drt is a sound axiomatization with respect to the bisimulation equivalence
model induced by T(ACPdrt) (see Theorem 3.7.14),

(iv). T(ACPdrt) is an operationally conservative extension of T(BPAdrt).

And in order for T(ACPdrt) indeed to be an operationally conservative extension of
T(BPAdrt) we must verify the following conditions:

(i). T(BPAdrt) is a pure, well-founded term deduction system in path format,

(ii). T(ACPdrt) is a term deduction system in path format,

(iii). T(BPAdrt) ⊕ T(ACPdrt) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �

Theorem 3.7.17 (Completeness of ACP+drt)
The equational specification ACP+drt is a complete axiomatization of the set of closed ACPdrt

terms modulo bisimulation equivalence.

Proof By Verhoef’s General Completeness Theorem (see [25], or Theorem 2.4.26 of
[13]) this follows immediately from:

(i). ACP+drt has the elimination property for BPAdrt (see Theorem 3.7.11),

(ii). ACP+drt is a conservative extension of BPA+drt (see Theorem 3.7.16).

�

Remark 3.7.18 (Completeness of ACPdrt)
Completeness of a somewhat different version of ACPdrt is also claimed (without proof)
in Section 3.10 of [10].

Definition 3.7.19 (Axioms for the Communication Merge and Delayable Actions)
We define the Axioms USDCF1–USDCF2 and USDCM2–USDCM4 for the ultimate start de-
lay with respect to the communication merge as shown in Table 39 on the following page.
Note that they precisely correspond to the equalities of Proposition 3.7.8.

Corollary 3.7.20 (Soundness of ACPdrt + USD1–7 + USDCF1–2 + USDCM2–4)
The set of closed ACPdrt terms modulo bisimulation equivalence is a model of ACPdrt +
USD1–USD7 + USDCF1–USDCF2 + USDCM2–USDCM4.
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a | b = c if γ(a,b) = c ≠ δ USDCF1

a | b = δ if γ(a,b) = δ USDCF2

a | b · x = (a | b) · x USDCM2

a · x | b = (a | b) · x USDCM3

a · x | b · y = (a | b) · (x ‖ y) USDCM4

Table 39: Axioms for the communication merge and delayable actions.

Proof This follows directly from the soundness of ACP+drt (see Theorem 3.7.14 on
page 121) and the fact that Axiom USD1–USD7, USDCF1–USDCF2, and USDCM2–USDCM4
are derivable in ACP+drt (see Proposition 3.7.7 on page 110 and Proposition 3.7.8 on
page 111). �

Corollary 3.7.21 (Completeness of ACPdrt + USD1–7 + USDCF1–2 + USDCM2–4)
If we add Axioms USD1–USD4 of Table 18 on page 45, Axiom USD5 of Table 23 on page 68,
Axioms USD6–USD7 of Table 36 on page 109, and Axioms USDCF1–USDCF2 and USDCM2–
USDCM4 of Table 39 to ACPdrt, we again have a complete axiomatization of the set of
closed ACPdrt terms modulo bisimulation equivalence.

Proof Careful inspection of the dependencies between the proofs in this section re-
veals that the proof of Theorem 3.7.17 only relies upon RSP(USD) to ensure Proposition
3.7.7(i)–(vii) and Proposition 3.7.8. So, we obviously do not need RSP(USD) anymore if we
add the corresponding Axioms USD1–USD7, USDCF1–USDCF2, and USDCM2–USDCM4.
Note that in this way we get a purely equational axiomatization (i.e. without conditional
axioms or principles). Note also that Axioms CF1–CF2 and USDCF1–USDCF2 are not con-
ditional axioms, but axiom schemes, as are all axioms that contain an atomic action. �

Definition 3.7.22 (Axiom for the Ultimate Start Delay and Communication Merge)
We define the Axiom USD8 for the ultimate start delay of a communication merge as
shown in Table 40.

bx | ycω= bxcω| bycω USD8

Table 40: Axiom for bx | ycω.

Theorem 3.7.23 (Soundness of USD8)
The set of closed ACPdrt terms modulo bisimulation equivalence is a model of USD8.

Proof Take the relation:

R = {(s, s), (bs | tcω, bscω| btcω)|s ∈ C(ACPdrt)
}

First we look at the transitions of the left-hand side:
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(i). Suppose bs | tcω a→ p. By inspection of the deduction rules we distinguish the fol-
lowing cases:

(a) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then bscω b→ p1 and btcω c→ p2, so
bscω| btcω a→ p1 ‖ p2, and (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then bscω b→√ and btcω c→ p2, so
bscω| btcω a→ p2, and (p2, p2) ∈ R.

(c) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then bscω b→ p1 and btcω c→√, so
bscω| btcω a→ p1, and (p1, p1) ∈ R.

(ii). Suppose bs | tcω a→√. By inspection of the deduction rules we can conclude that
s b→√, t c→√, and γ(b, c) = a. Then bscω b→√ and btcω c→√, so bscω| btcω a→√.

(iii). Suppose bs | tcω σ→ p. By inspection of the deduction rules we can conclude that
p ≡ bs | tcω. We also have bscω| btcω σ→ bscω| btcω, and (bs | tcω, bscω| btcω) ∈ R.

Secondly, we look at the transition of the right-hand side:

(i). Suppose bscω | btcω a→ p. By inspection of the deduction rules we distinguish the
following cases:

(a) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then bs | tcω c→ p1 ‖ p2, and
(p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then bs | tcω a→ p2, and (p2, p2) ∈ R.

(c) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then bs | tcω a→ p1, and (p1, p1) ∈ R.

(ii). Suppose bscω| btcω a→√. By inspection of the deduction rules we can conclude that
s b→√, t c→√, and γ(b, c) = a. Then bs | tcω a→√, and we are done.

(iii). Suppose bscω| btcω σ→ p. By inspection of the deduction rules we can conclude that
p ≡ bscω| btcω. We also have bs | tcω σ→ bs | tcω, and (bs | tcω, bscω| btcω) ∈ R.

Finally, we look at the immediate deadlock predicate. Neither side has immediate dead-
lock: ¬ID(bs | tcω) and ¬ID(bscω| btcω) (note that ultimate start delay removes immedi-
ate deadlock, see Remark 2.8.5 on page 54). �

Proposition 3.7.24 (Properties of ACPdrt, Part IV)
For ACPdrt terms x and y and any a,b, c ∈ Aδ, we have the following equalities:

(i). ACPdrt + USD8 ` a | b = c if γ(a, b) = c ≠ δ
(ii). ACPdrt + USD8 ` a | b = δ if γ(a,b) = δ
(iii). ACPdrt + USD2 + USD8 ` a | b · x = (a | b) · x
(iv). ACPdrt + USD2 + USD8 ` a · x | b = (a | b) · x
(v). ACPdrt + USD2 + USD8 ` a · x | b · y = (a | b) · (x ‖ y)

Proof

(i). ACPdrt + USD8 ` a | b = bacω| bbcω= ba | bcω= bccω= c
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(ii). ACPdrt + USD8 ` a | b = bacω| bbcω= ba | bcω= bδcω= δ

(iii). ACPdrt + USD2 + USD8 ` a | b · x = bacω| bbcω· x = bacω| bb · xcω= ba | b · xcω=
b(a | b) · xcω= b(a | b)cω· x = (bacω| bbcω) · x = (a | b) · x

(iv). ACPdrt + USD2 + USD8 ` a · x | b = bacω· x | bbcω= ba · xcω| bbcω= ba · x | bcω=
b(a | b) · xcω= b(a | b)cω· x = (bacω| bbcω) · x = (a | b) · x

(v). ACPdrt + USD2 + USD8 ` a · x | b · y = bacω · x | bbcω · y = ba · xcω | bb · ycω =
ba · x | b · ycω= b(a | b) · (x ‖ y)cω= b(a | b)cω·(x ‖ y) = (bacω|bbcω) ·(x ‖ y) =
(a | b) · (x ‖ y)

�

Remark 3.7.25 (Properties of ACPdrt, Part IV)
Note that the equalities of Proposition 3.7.24 on the preceding page correspond pre-
cisely to the equalities of Proposition 3.7.8 on page 111 and Axioms USDCF1–USDCF2
and USDCM2–USDCM4 from Definition 3.7.19 on page 122.

Corollary 3.7.26 (Soundness of ACPdrt + USD1–USD8)
The set of closed ACPdrt terms modulo bisimulation equivalence is a model of ACPdrt +
USD1–USD8.

Proof This follows directly from the soundness of ACP+drt (see Theorem 3.7.14 on
page 121) and the facts that Axioms USD1–USD7 are derivable in ACP+drt (see Proposi-
tion 3.7.7 on page 110) and that Axiom USD8 is sound (see Theorem 3.7.23 on page 123).
�

Corollary 3.7.27 (Completeness of ACPdrt + USD1–USD8)
If we add Axioms USD1–USD4 of Table 18 on page 45, Axiom USD5 of Table 23 on page 68,
Axioms USD6–USD7 of Table 36 on page 109 and Axiom USD8 of Table 40 on page 123 to
ACPdrt, we again have a complete axiomatization of the set of closed ACPdrt terms modulo
bisimulation equivalence.

Proof As show in Proposition 3.7.24, if we have the add Axioms USD2 and USD8 to the
axioms of ACPdrt, we can (for closed terms) derive Axiom USDCF1–USDCF2 and USDCM2–
USDCM4. Using Corollary 3.7.21 on page 123, we can now trivially derive the desired
result. �
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4 Conclusions

To begin with, we are reasonably confident that the axiomatizations listed in this pa-
per are sound and complete. An overview of the main theorems is listed in Table 44 on
page 136.

Before we started this paper, we were also confident of the soundness and complete-
ness of these axiomatizations, but at that time wrongly so. We discovered that the ax-
iomatizations we started out with, most of which have been published and claimed sound
and complete before, were neither sound nor complete. We highlight two characteristic
cases:

• Weakening DRT4 to DRT4A brings the need to introduce DRT5, something we did
not realize at first. This left all interesting theories incomplete. Only when DRT5
was needed in the proof of Lemma 2.6.16(iv), we found out about this mistake.

• Introducing δ̇ in a context that supports communication brings the need to weaken
DRTCM6 to DRTCM6ID, which we did not realize due to the “intuitive” and “obvi-
ous” nature of DRTCM6. This left some theories unsound. We found out this prob-
lem after we could not complete the last few “trivial details” of the proof of Theorem
3.7.14.

Both these problems were discovered when we were writing out all details of “trivial”
proofs, proofs which we had originally not planned to do at all. So, we eventually decided
to give as much and as detailed proofs as reasonably manageable. And, as to be expected,
we found some more mistakes like the ones listed above. As a side-result, we gained
insight into the various aspects of axiomatizations.

Firstly, when we weigh the merits of the “νrel/σrel axiomatization style” of [11] (with
theories like PA−drt–ID and ACP−drt–ID) against those of the “classic axiomatization style”
of [10] (with theories like PA−drt–ID′and ACP−drt–ID′), we conclude that the νrel/σrel style
is better suited towards practical applications, as it makes calculations easier. However,
from a theoretical viewpoint it’s troublesome: it does not lend itself well to term rewriting
system analysis, and worse, it does not seem to be compatible with the addition of the
empty step, as is shown in [12]. On the other hand, the classic style is not ideal either. It
appears less intuitive, and it needs more axioms. Compare for example Axioms DRTM5–
DRTM6 of Table 25 on page 70 with Axioms DRTM7–DRTM11 of Table 27 on page 76.
Here the classic style needs five axioms to do what the νrel/σrel style can do much clearer
in two axioms. Consequently, calculations in the classic style are much longer too.

Second, we have shown how to eliminate the recursion principle RSP(USD) from the
theories that contain it. As shown in Corollaries 2.6.22, 2.8.26, 3.6.18, 3.7.21, and 3.7.27,
one can straightforwardly derive unconditional axioms to replace the conditional prin-
ciple RSP(USD). The recipe is always the same: identify in the correctness proof of the
conditional theory the places where RSP(USD) is used, put those applications in a sepa-
rate lemma, and introduce an axiom for every clause of that lemma. Using this recipe, we
introduced Axioms USD1–USD8, USDCF1–USDCF2, and USDCM2–USDCM4. The advan-
tage is clear: having a fully unconditional theory enables us to reason fully algebraically,
giving us a fuller apparatus of methods to work with. On the other hand, the principle
RSP(USD) is clean, neat, and simple, and can be applied in any theory, while the “USD
axiomatization style” requires new axioms for every new theory. That this can lead to
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unwieldy theories can be observed from [10]. We feel that the “RSP(USD) axiomatization
style”, which till now has only appeared in the rather obscure papers [9, 11], deserves a
wider audience.

Third, we find that the absence of the empty step (a constant ε such that ε·x= x = x·ε,
see [12] for details) is a major nuisance. To begin with, the empty step would allow us to
express our axioms much more compact. For example, Axiom DRTM2 would be just an
instance of Axiom DRTM3 if the x in the latter could take the value ε. Similarly, Axioms
DRTCM2–DRTCM4 could also be collapsed to just one axiom with the help of ε (and see [7]
for a theory in which it is hard to find any axiom that could not be formulated better with
the help of the empty step!). The absence of ε is even felt worse when doing calculations.
If we look for example at the proof of Theorem 3.7.11, we see we have to distinguish 49
cases(!) when doing simultaneous induction on two variables, as a basic term in ACPdrt

can take seven essentially different forms. With the help of ε, we could reduce this to
five forms, and only 25 cases would have to be considered when doing induction on two
variables. Similar considerations hold for the proof of Theorem 3.4.12 on page 88, where
the absence of ε for some case even forces us into a sixteen-fold (sic!) increase in proof
obligations. We conclude that there is a clear need for the empty step in discrete-time
process algebra.

Then, we hope that this paper can serve as a reference point: to our knowledge this
is the first paper that extensively lists all important discrete-time process algebra theo-
ries, together with all relevant definitions and elementary theorems. Furthermore, as all
proofs in this paper are constructive, it should now be easy to develop a tool that can
automatically rewrite two bisimilar ACPdrt terms into one another.

Finally, note that we have surveyed several distinct methods for proving soundness
and completeness. To prove soundness we have used:

• the direct method (see Remark 2.4.13 on page 17),

• the indirect method (see Remark 2.6.20 on page 44), and,

• the ground equivalence method (see Remark 3.3.14 on page 82).

To prove completeness we have used:

• the direct method (see Remark 2.2.18 on page 9),

• the indirect method (see Remark 2.6.20 on page 44),

• Verhoef’s method (see Remark 3.2.14 on page 75), and,

• the ground equivalence method (see Remark 3.3.14 on page 82).

We believe that this spectrum of methods provides a convenient starting point to prove
soundness and completeness of most (timed) process algebras that have been described
in the literature, with the exception of theories that support abstraction.

As far as future research is concerned: we would like to generalize our results to a
setting that includes abstraction. This seems however not at all trivial, and may require
a substantial effort. Furthermore, as noted above, further research on the empty step is
justified. This work is currently in progress, and will be published as [12].
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A Nomenclature and notational issues

In this section we present a quick overview of the nomenclature used in ACP-style
discrete-time process algebras.

A.1 Signatures

In Table 41 we give the signature of some process algebras, among which all those treated
in this paper.

+ · a δ b cω σrel νrel a δ δ̇ ‖ ‖ |
BPA • • •
BPAδ • • • •
PA • • • • •
PAδ • • • • • •
ACP • • • • • • •
BPA−drt–δ • • • •
BPA−drt–ID • • • • • •
BPA−drt • • • • • • •
BPAdrt–ID • • • • • • • • •
BPAdrt • • • • • • • • • •
PA−drt–ID • • • • • • • •
PA−drt • • • • • • • • •
PAdrt–ID • • • • • • • • • • •
PAdrt • • • • • • • • • • • •
ACP−drt–ID • • • • • • • • •
ACP−drt • • • • • • • • • •
ACPdrt–ID • • • • • • • • • • • •
ACPdrt • • • • • • • • • • • • •

Table 41: Signatures of some process algebras.

In naming discrete-time process algebras we have, among others, the following conven-
tions:

• The subscript “drt” signifies “discrete relative time”, so we have the relative-time
time-unit delay (“σrel”), and furthermore either non-delayable actions (double un-
derlined: “a”), or delayable actions (no special notation: “a”), or both. If we have
the undelayable deadlock constant (“δ”), we also have the “now” operator (“νrel”),
and vice versa.

• The superscript “−” signifies that we do not have delayable actions (“a”), so only the
non-delayable actions remain (“a”).
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• The postfix “−δ” signifies the absence of all deadlock constants: non-delayable
(“δ”), delayable (“δ”), or immediate (“δ̇”).

• The postfix “–ID” signifies the absence of the immediate deadlock constant (“δ̇”).

A.2 Comparison with other notations

In the (older) literature about ACP-style discrete-time process algebras we sometimes find
slightly different notations. Below we list the most important differences:

• We find the notation “BPAdt” for “BPA−drt–δ”, “BPAδdt” for “BPA−drt–ID”, and “PAδdt”
for “PA−drt–ID” [13].

• We find the notation “ACPdt” for “ACP−drt–ID” [6, 13, 23],

• We find the notations “σd” and “σrel(1)” for “σrel” [6, 13, 23].

• We find the notation “cts(a)” (“current time slice”) for the undelayable action “a”,
and “ats(a)” (“any time slice”) for the delayable action “a” [8, 10].

• We find the notation “a[1]” for the undelayable action “a”, and “a” for the delayable
action “a” [5, 6].

• It has been suggested to refer to the delayable deadlock constant “δ” as livelock,
and to the immediate deadlock constant “δ̇” as the immediate time stop, full time
stop, or catastrophic deadlock [4, 10].

• The unbounded start delay operator “b cω” was first described by Nicollin and
Sifakis, and is therefore also known as one of the Nicollin-Sifakis operators [20].

• The naming scheme for axioms (A1, A2, etc.) has become quite problematic. Nam-
ing is generally not applied consistently within ACP articles published, let alone
across them. We have no illusions this article is any different, although, and be-
cause, we sort of tried to adhere to the latest fashions.

• Often the convention is used that the variables x, y, and z refer to open process
terms, and the variables s, t, and u to closed process terms. Although some parts
of this article conform to this convention, we shamefully admit that in large parts
it is blatantly violated.
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B Overview

B.1 Axioms

The list below shows all axioms mentioned in this paper, in alphabetical order. Behind
the name of the axioms the number is listed of the page where the axiom is introduced.

x+ y = y + x A1 (page 7)

(x+ y) + z = x+ (y+ z) A2 (page 7)

x+ x = x A3 (page 7)

(x+ y) · z = x · z + y · z A4 (page 7)

(x · y) · z = x · (y · z) A5 (page 7)

x+ δ = x A6 (page 12)

a+ δ = a A6A (page 12)

x+ δ̇ = x A6ID (page 46)

δ · x = δ A7 (page 12)

δ̇ · x = δ̇ A7ID (page 46)

a = bacω ATS (page 32)

νrel(a) = a DCS1 (page 23)

νrel(x+ y) = νrel(x) + νrel(y) DCS2 (page 23)

νrel(x · y) = νrel(x) · y DCS3 (page 23)

νrel(σrel(x)) = δ DCS4 (page 23)

νrel(δ̇) = δ̇ DCSID (page 46)

σrel(x) + σrel(y) = σrel(x+ y) DRT1 (page 14)

σrel(x) · y = σrel(x · y) DRT2 (page 14)

δ · x = δ DRT3 (page 23)

a+ δ = a DRT4 (page 23)

x+ δ = x DRT4A (page 23)

σrel(x) + δ = σrel(x) DRT5 (page 23)

a | b = c if γ(a,b) = c ≠ δ DRTCF1 (page 84)

a | b = δ if γ(a, b)δ DRTCF2 (page 84)

x ‖ y = x ‖ y + y ‖ x+ x | y DRTCM1 (page 84)

a | b · x = (a | b) · x DRTCM2 (page 84)

a · x | b = (a | b) · x DRTCM3 (page 84)

a · x | b · y = (a | b) · (x ‖ y) DRTCM4 (page 84)

σrel(x) | σrel(y) = σrel(x | y) DRTCM5 (page 84)

σrel(x) | νrel(y) = δ DRTCM6 (page 85)

σrel(x) | (νrel(y) + δ) = δ DRTCM6ID (page 110)

νrel(x) | σrel(y) = δ DRTCM7 (page 85)

(νrel(x) + δ) | σrel(y) = δ DRTCM7ID (page 110)

a |σrel(x) = δ DRTCM8 (page 94)
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σrel(x) | a = δ DRTCM9 (page 94)

a · x | σrel(y) = δ DRTCM10 (page 94)

σrel(x) | a · y = δ DRTCM11 (page 94)

(x+ y) | z = x | z + y | z DRTCM12 (page 84)

x | (y + z) = x | y + x | z DRTCM13 (page 84)

x ‖ y = x ‖ y + y ‖ x DRTM1 (page 69)

a ‖ x = a · x DRTM2 (page 69)

a ‖ (x+ δ) = a · (x+ δ) DRTM2ID (page 100)

a · x ‖ y = a · (x ‖ y) DRTM3 (page 69)

a · x ‖ (y+ δ) = a · (x ‖ (y+ δ)) DRTM3ID (page 100)

(x+ y) ‖ z = x ‖ z + y ‖ z DRTM4 (page 69)

σrel(x) ‖ νrel(y) = δ DRTM5 (page 70)

σrel(x) ‖ (νrel(y) + δ) = δ DRTM5ID (page 100)

σrel(x) ‖ (νrel(y) +σrel(z)) = σrel(x ‖ z) DRTM6 (page 70)

σrel(x) ‖ a = δ DRTM7 (page 76)

σrel(x) ‖ a · y = δ DRTM8 (page 76)

σrel(x) ‖ (a+ y) = σrel(x) ‖ y DRTM9 (page 76)

σrel(x) ‖ (a · y + z) = σrel(x) ‖ z DRTM10 (page 76)

σrel(x) ‖ σrel(y) = σrel(x ‖ y) DRTM11 (page 76)

x ‖ δ̇ = δ̇ DRTMID1 (page 100)

δ̇ ‖ x = δ̇ DRTMID2 (page 100)

x | δ̇ = δ̇ DRTMID3 (page 110)

δ̇ | x = δ̇ DRTMID4 (page 110)

σrel(δ̇) = δ DRTSID (page 46)

bxcω= νrel(x) +σrel(bxcω) USD (page 32)

bacω= a USD1 (page 45)

bx · ycω= bxcω· y USD2 (page 45)

bx+ ycω= bxcω+ bycω USD3 (page 45)

bσrel(x)cω= δ USD4 (page 45)

bδ̇cω= δ USD5 (page 68)

a ‖ bxcω= a · bxcω USD6 (page 109)

a · x ‖ bycω= a · (x ‖ bycω) USD7 (page 109)

bx | ycω= bxcω| bycω USD8 (page 123)

a | b = c if γ(a,b) = c ≠ δ USDCF1 (page 123)

a | b = δ if γ(a, b) = δ USDCF2 (page 123)

a | b · x = (a | b) · x USDCM2 (page 123)

a · x | b = (a | b) · x USDCM3 (page 123)

a · x | b · y = (a | b) · (x ‖ y) USDCM4 (page 123)
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B.2 Theories

The list below gives for every theory we defined, the axioms it contains.

• BPA = A1–A5.

• BPAδ = A1–A7.

• BPA−drt–δ = A1–A5 + DRT1–DRT2.

• BPA−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4.

• BPAdrt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + ATS + USD.

• BPA−drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID.

• BPAdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD.

• PA−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM1–DRTM6.

• PA−drt–ID′ = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM1–DRTM4 +
DRTM7–DRTM11.

• ACP−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM2–DRTM6 +
DRTCM1–DRTCM7 + DRTCM12–DRTCM13 + DRTCF1–DRTCF2.

• ACP−drt–ID′ = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM2–DRTM4,
DRTM7–DRTM11 + DRTCM1–DRTCM5 + DRTCM8–DRTCM13 + DRTCF1–DRTCF2.

• PAdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM1 + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTMID1–DRTMID2.

• ACPdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 +
DRTCF1–DRTCF2 + DRTMID1–DRTMID4.

In Table 42 on the next page we give an overview of the axioms of the (basic) process
algebras treated in Section 2, for the purpose of comparing the respective theories with
each other. We have the following legend:

• A “•” indicates that the axiom is present in the theory,

• A “+” indicates that the axiom is not present but can be derived (for closed terms)
from the other axioms in the theory,

• A “−” indicates that the axiom does not hold in the theory,

• A “×” indicates that the axiom is meaningless in the theory, as there is a signature
conflict.

In Table 43 on page 135 we give an overview of the axioms pertaining to merge operators
of the (concurrent) process algebras treated in Section 3. The legend is the same as for
the previous table.
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BPA BPAδ BPA−drt–δ BPA−drt–ID BPA+drt–ID BPA−drt BPA+drt

Main Axioms
A1–5 • • • • • • •
DRT1–2 × × • • • • •
DRT3–5 × × × • • • •
DCS1–4 × × × • • • •
ATS, USD × × × × • × •

ID Axioms
A6ID–7ID × × × × × • •
DCSID, DRTSID × × × × × • •

Auxiliary Axioms
A6 × • × × + × −
A7 × • × × + × +
A6A × + × × + × +
DRT4A × × × + + − −

USD-Style Axioms
USD1–4 × × × × + × +
USD5 × × × × × × +

Table 42: Overview of axioms of basic process algebras.
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PA−drt–ID PA−drt–ID′ ACP−drt–ID ACP−drt–ID′ PAdrt ACPdrt

Main Axioms for ‖
DRTM1 • • − − • −
DRTM2–M3 • • • • − −
DRTM4 • • • • • •
DRTM5 • + • + − −
DRTM6 • + • + • •
DRTM7–M11 + • + • + +

Main Axioms for |
DRTCF1–CF2 × × • • × •
DRTCM1–CM5 × × • • × •
DRTCM6–CM7 × × • + × −
DRTCM8–CM11 × × + • × +
DRTCM12–CM13 × × • • × •

ID Axioms
DRTM2ID–M3ID + + + + • •
DRTM5ID + + + + • •
DRTCM6ID–CM7ID × × + + × •
DRTMID1–MID2 × × × × • •
DRTMID3–MID4 × × × × × •

USD-Style Axioms
USD6–7 × × × × + +
USD8 × × × × × +
USDCF1–CF2 × × × × × +
USDCM2–CM4 × × × × × +

Table 43: Overview of axioms of concurrent process algebras.
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B.3 Theorems

In Table 44 we give an overview of the definitions of the axioms and semantics of the
process algebras listed in this paper, with corresponding theorems regarding elimina-
tion, soundness, and completeness.

Axioms Semantics Elimination Soundness Completeness

Basic Process Algebras

BPA Def. 2.2.6 Def. 2.2.8 Prop. 2.2.16 Thm. 2.2.17 Thm. 2.2.22

BPAδ Def. 2.3.2 Def. 2.3.4 Prop. 2.3.9 Thm. 2.3.10 Thm. 2.3.11

BPA−drt–δ Def. 2.4.2 Def. 2.4.4 Thm. 2.4.11 Thm. 2.4.14 Thm. 2.4.17

BPA−drt–ID Def. 2.5.2 Def. 2.5.4 Thm. 2.5.12 Thm. 2.5.14 Thm. 2.5.17

BPA+drt–ID Def. 2.6.2 Def. 2.6.5 Thm. 2.6.12 Thm. 2.6.14 Thm. 2.6.17

BPA−drt Def. 2.7.2 Def. 2.7.6 Thm. 2.7.11 Thm. 2.7.13 Thm. 2.7.16

BPA+drt Def. 2.8.2 Def. 2.8.4 Thm. 2.8.16 Thm. 2.8.18 Thm. 2.8.22

Concurrent Process Algebras

PA−drt–ID Def. 3.2.2 Def. 3.2.3 Cor. 3.2.9 Thm. 3.2.11 Thm. 3.2.16

PA−drt–ID′ Def. 3.3.2 Def. 3.3.3 Cor. 3.3.8 Cor. 3.3.17 Cor. 3.3.19

ACP−drt–ID Def. 3.4.3 Def. 3.4.5 Cor. 3.4.10 Thm. 3.4.12 Thm. 3.4.15

ACP−drt–ID′ Def. 3.5.2 Def. 3.5.3 Cor. 3.5.8 Cor. 3.5.12 Cor. 3.5.14

PA+drt Def. 3.6.2 Def. 3.6.3 Cor. 3.6.9 Thm. 3.6.11 Thm. 3.6.14

ACP+drt Def. 3.7.2 Def. 3.7.3 Cor. 3.7.12 Thm. 3.7.14 Thm. 3.7.17

Table 44: Overview of definitions and theorems.

Please take note of the following:

• PA−drt–ID and PA−drt–ID′ are two slightly different axiomatizations of the same the-
ory with the same semantics, taken from [11] and [10] respectively. We prove both
axiomatizations sound and complete.

• The same for ACP−drt–ID and ACP−drt–ID′.
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